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Analysis of spatial interactions among shared e-scooters, shared bikes, and
public transit

Muyang Lua , Elizabeth J. Trautb , S. Ilgin Gulera , and Xianbiao Hua

aCivil and Environmental Engineering, Pennsylvania State University, State College, PA, USA; bLarson Transportation Institute,
Pennsylvania State University, State College, PA, USA

ABSTRACT
Shared bikes, shared e-scooters, and public transit make up most public transportation
modes in big cities. Their combination can provide a convenient, efficient, and flexible
multi-modal transportation service. Despite the obvious similarity among them, differences
exist in the roles that they play in a multi-modal transportation system. A case study in the
City of Austin, where shared bikes, shared e-scooters, and public transit coexist, is used to
explore their unique characteristics and how they spatially complement or compete with
each other. The results show that public transit has more pronounced characteristics related
to commuting than shared micromobility modes do, and that shared bikes are more likely
to be used for commuting compared to shared e-scooters. Interestingly, the results suggest
that there is spatial segregation between where shared bikes complement public transit
and shared e-scooters complement public transit, i.e., only one shared mode complements
public transit at a given area.
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Introduction

Micromobility, such as bicycles, e-bikes, e-scooters,
and e-skateboards, is a range of small, lightweight
vehicles that are typically operated at speeds below
25 km/h by individual users. This family of transporta-
tion modes has recently become very popular in many
cities, especially as a shared mobility option. In 2008,
Washington, D.C. launched the first modern bike-
share system in the U.S. named smartBike DC, a 10-
station, 120-shared bikes pilot program. Since 2010,
over 343 million trips have been taken in the U.S. by
micromobility (NACTO, 2020). E-scooters have seen a
large increase in popularity since 2018 and the e-
scooter market is expected to grow to more than $30
Billion by 2025 (Renub Research, 2020). As micromo-
bility becomes a mainstream transportation mode, its
impact on the transportation system could become
even more significant and diverse. Thus, an appropri-
ate policy that seamlessly accommodates these modes
into the existing traffic environment is important to a
city.

Shared bikes, shared e-scooters, and public transit
are the major non-automobile transportation modes
used in urban areas for commuting and leisure trips.

Despite the apparent similarity between shared e-
scooters and shared bikes, these two micromobility
modes have significant differences related to the users’
travel patterns and behaviors. Therefore, they are usu-
ally unevenly distributed across different areas and
serve different roles when jointly participating in a
multi-modal transportation network, especially when
complementing or competing with public transit.
Understanding the temporal and spatial characteristics
of multiple micromobility modes that coexist with
public transit can help improve policy making in cit-
ies. However, this knowledge is lacking from the exist-
ing literature. The goal of this article is to analyze the
spatial interactions of shared bikes, shared e-scooters,
and public transit and to explore their different roles
in a multi-modal transportation system.

Literature review

Just like the rapid development of micromobility, the
corresponding research on this novel traffic mode has
rapidly developed in recent years. The related litera-
ture can be categorized into two parts: (1) shared e-
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scooters compared to shared bikes and (2) shared
bikes or e-scooters in relation to public transit.

Shared e-scooter travel and usage patterns
compared to shared bikes
Shared e-scooters have many characteristics in com-
mon with shared bikes such as use in urban areas,
flexibility, convenience, and ability to be docked or
dockless. However, e-scooters have some distinctive
features, including fewer riding skill requirements, less
bike-friendly clothing requirements, and limited riding
range.

Studies show that shared e-scooter users typically
skew young and affluent (Laa & Leth, 2020) and
achieve greater gender parity compared to docked
bike-sharing services (Clewlow, 2019). However, the
low deck and safer performance of e-scooters make
this mode more user-friendly for older users as well,
compared to shared bikes (Gitelman et al., 2017). A
survey-based study found that, compared to motor-
ized bicycles, e-scooters statistically have a shorter
travel distance (Jordehi et al., 2013); another study
conducted in Indianapolis found that more than half
of trips taken by e-scooters were less than
10minutes long and traveled less than one mile
(Mathew et al., 2019). E-scooter trips were also
found to have lower speeds compared to e-bikes
(Almannaa et al., 2021).

Due to the different characteristics, the trip pur-
poses of shared e-scooters and shared bikes are differ-
ent: shared e-scooters are more likely to be used for
leisure trips while shared bikes tend to be used for
commuting (Gitelman et al., 2017; Hardt &
Bogenberger, 2019; McKenzie, 2019; Zou et al., 2020).
Different dock types also lead to different travel pur-
poses, where docked micromobility modes are pre-
ferred for commuting. Studies further concluded that
the usage patterns of shared e-scooters are more simi-
lar to the usage patterns of nonmember bike-share
users compared to member bike-share users (Reck
et al., 2021; Younes et al., 2020). Further, the weather
was observed to be less of a disutility for shared e-
scooter users than for shared bike users, regardless of
membership type.

The temporal usage patterns of shared e-scooters
were found to vary based on location. For example, in
Austin, the largest shared e-scooter volumes were
observed during the afternoon and weekends, while in
Minneapolis the largest volumes were experienced
during the evening (Bai & Jiao, 2020).

Interaction between micromobility and other traffic
modes
Micromobility can benefit the general traffic network,
e.g., by providing an alternative transport mode to
motorized vehicles, providing last-mile connectivity to
public transit, or complementing other modes of
transport (M�edard de Chardon, 2019). Understanding
how micromobility complements and competes with
other traffic modes is crucial to the understanding of
multi-modal transportation systems.

Typically, shared bikes, shared e-scooters, and pub-
lic transit are modes that are used for similar pur-
poses. Various studies have tried to understand the
interactions between these modes. Survey-based stud-
ies found that shared e-scooters, similar to shared
bikes, mostly replace walking and public transport for
short distance travels (Hardt & Bogenberger, 2019;
Laa & Leth, 2020; Sanders et al., 2020). Studies also
concluded that bike share systems can complement
public transit, e.g., by serving as the first-and-last mile
solution (T. Ma et al., 2015; Pan et al., 2010), or sub-
stitute public transit by replacing short distance trips
(A. A. Campbell et al., 2016; K. B. Campbell &
Brakewood, 2017; Guidon et al., 2019). These effects
can vary both spatially and temporally (Kong et al.,
2020; X. Ma et al., 2019). From the temporal perspec-
tive, it was found that the correlation between dock-
less shared bikes and public transit varies from
weekdays, when there is a positive correlation, to
weekends, when there is a negative correlation ( Kong
et al., 2020; X. Ma et al., 2019 ). Another study found
that bikes and public transit substitute each other for
short-term trips, e.g., individual trips, but complement
in the long-term, e.g., considering multiday or multi-
season results (Singleton & Clifton, 2014). From the
spatial perspective, a survey conducted in
Washington, D.C., and Minneapolis found that the
direction of mode shift between shared bikes and pub-
lic transit depends on demographic attributes such as
age, gender, commute distance, and location of resi-
dences (Martin & Shaheen, 2014). It was also found
that the introduction of a new transit system can
influence shared bike usage (Gu et al., 2019). There
are only a few studies that analyzed the interaction
between public transit and e-scooter usage. One recent
study found that higher transit accessibility increased
shared e-scooter usage (Bai & Jiao, 2020). Further, a
few different works have considered the interaction
between shared bikes and public transportation to
understand how the presence of the two modes
together could change their ridership (A. A. Campbell
et al., 2016; K. B. Campbell & Brakewood, 2017;
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Guidon et al., 2019; X. Ma et al., 2019; Pan et al.,
2010).

Gaps in the literature
To summarize, the literature typically has focused on
the travel and usage patterns of shared bikes or shared
e-scooters considering temporal or spatial variations.
Most of these works have considered systems in which
either shared bikes or e-scooters operate individually
(not together) and have identified the differences in
travel behavior between shared bikes and shared e-
scooters.

However, to the authors’ knowledge, there are no
studies that analyze the spatial interaction among
shared bikes, shared e-scooters, and public transit
within the same city. Here, interactions may include
competition, where one mode competes or replaces
another, or complementarity, where travelers have to
rely on two or more modes to complete their trips.
Given the unique characteristics of shared e-scooters
and shared bikes, it is necessary to consider the differ-
ences between them when complementing or compet-
ing with public transit to better distribute them across
the city. Therefore, this study aims to comprehen-
sively understand the interactions among these two
types of micromobility modes and public transit when
they are operating in the same area.

Research objectives

The goal of this article is to explore the interaction
among three transportation modes, i.e., shared bike,
shared e-scooter, and public transit that operate
within the same urban area. This goal is accomplished
by using data from the City of Austin, TX. First, the
individual spatiotemporal characteristics of the shared
bike, shared e-scooter, and public transit modes are
summarized, and then the spatial interaction among
these three modes is modeled considering demo-
graphic factors and general trip purposes.

The remainder of the article is organized as follows.
First, a brief introduction of the datasets is presented,
followed by an overview of the methodology. The
results and discussion of the spatiotemporal character-
istics and interactions among the three public trans-
portation modes are presented next. Finally, some
concluding remarks are summarized.

Data description

In this research, the open-access trip datasets from the
City of Austin, Texas, in the United States are used.

The dataset includes both shared bikes and shared e-
scooters operating within a network also served by
public transit, and thus provides a unique opportunity
to observe the interactions between multiple modes. It
should be noted that different cities may have differ-
ent preferences for shared micromobility services
based on their demographics, geography, and policy
regulation. Some cities are dominated by shared bikes,
such as Houston, New York, and Miami, while others
are proliferating with shared e-scooters, such as San
Antonio. Comparison of the shared bike and shared
e-scooter modes between different cities is not mean-
ingful since they are highly influenced by local charac-
teristics. Only a few cities have a relatively balanced
development of shared bikes and shared e-scooter at
the same time, and the City of Austin is an example
of them, and thus becomes a good target city for this
research.

All datasets are collected in the same time range,
i.e., from 1 September 2018 to 1 September 2019, to
make them comparable and to rule out the impacts of
the COVID-19 pandemic. The origins and destina-
tions of trips from all traffic modes, i.e., shared e-
scooter, shared bike, and public transit, are aggregated
at the census tract level based on the availability of
data.

Shared micromobility dataset

The Shared Micromobility Vehicle Trips dataset con-
tains reports of the shared dockless electric-powered
scooter (e-scooter) and shared dockless bike trips pro-
vided to the City of Austin Transportation
Department as a part of the Shared Small Vehicle
Mobility Systems operating rules (Economic
Development, 2018). There is only one type of two-
wheeled standing shared e-scooter that operates in the
City of Austin, and all of the e-scooter data are avail-
able in the Shared Micromobility Vehicle Trips dataset.
On the other hand, there are two types of shared bike
services, i.e., the shared dockless bikes, which are
operated by companies such as Bird and Lime, and
the shared docked bikes, which are operated by B-
Cycle (now renamed as MetroBike) (AustinTexas.gov,
2022). The Shared Micromobility Vehicle Trips dataset
only includes data from the first of these two services,
therefore only shared dockless bikes are considered in
this study. This is acceptable since in 2019 only 12
out of 158 census tracts, mainly in and around down-
town, had shared docked bikes, while 97 census tracts
had shared dockless bikes. Therefore, this study only
considers the shared dockless bike trips to represent
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the shared bike trips. Further, the shared bike system
in the City of Austin consisted mostly of regular
human-powered bikes during the analysis window in
this study, and only a small portion of those bikes
was upgraded to electricity-assisted after 2020.

This dataset contains the vehicle type, start time
and end time, trip duration and distance, as well as
the start and end census tract of each trip, starting
from April 2018. Key variables in this dataset are
shown in Table 1.

The dataset is cleaned to remove rows containing
empty values, distances less than or equal to zero or
larger than 20 km, durations less than or equal to zero
or larger than 2 hours, and incorrect formats, which
eliminated 0.37% of the data. After this data cleaning,
the dataset spans 1 September 2018 to 1 September
2019, and contains a total of 7.03 million trips, of
which 6.68 million are e-scooter trips and 0.35 million
are shared bike trips. Even though the shared e-
scooter and shared bike trip volumes are not well-bal-
anced, the sample sizes are sufficient to reflect the
spatial pattern of both. The spatial distribution of the
origins of the micromobility trips in the City of

Austin is shown in Figure 1(a). From this figure, it
can be observed that micromobility trips are mostly
concentrated within the center of the city.

Public transit dataset

Capital Metro is the City of Austin’s regional public
transit provider with services including buses, shuttles,
and freight rail. The Capital Metro Automatic
Passenger Counter (APC) Ridership dataset is obtained
directly from the Automatic Vehicle Location System
(AVL) installed on buses (Capital Metro, 2020). Each
row contains the specific bus door opening and clos-
ing time at each stop accompanied by the geographic
coordinates and the number of passengers that board
and alight through all doors at this stop. Key variables
in the APC dataset are shown in Table 1. The raw
APC dataset contains abnormal records; therefore,
this dataset is cleaned and preprocessed to remove the
empty and abnormal records first. The APC data are
available from 1 January 2016 to 31 December 2019.
However, due to service changes or missing data,
some of the bus routes do not have complete data

Table 1. Key variables in the traffic datasets.
Traffic mode Trip count Temporal variables Spatial variables Other variables

Shared e-scooter Individual Trip start time, Trip end
time

Trip start census tract Trip
end census tract

Vehicle ID, Trip distance,
Trip duration, etc.

Shared bike Individual Trip start time, Trip end
time

Trip start census tract Trip
end census tract

Vehicle ID, Trip distance,
Trip duration, etc.

Public transit # of boarding, # of alighting Door open time, Door close
time

Stop latitude, Stop
longitude

Vehicle ID, Route ID, Dwell
time, maximum
loads, etc.

Figure 1. Spatial distribution of different traffic modes in the City of Austin.
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during this period. When bus routes with more than
5months of missing data are removed, 57 bus routes
remain, and these bus routes account for the majority
(96%) of the total passenger volumes across the City
of Austin. Therefore, the analysis is conducted using
the number of alighting passengers on these 57 bus
routes aggregated at the census tract level during the
analysis window. The spatial distribution of public
transit ridership is shown in Figure 1(b).

Supplemental datasets

To further understand factors that lead to spatial vari-
ation in the relationship between shared micromobil-
ity modes and public transit, supplemental datasets
are utilized. The goal is to understand how different
trip purposes might impact the usage of different
modes. Hence, the footage data of the point of interest
(POIs) dataset available from SafeGraph is utilized.
This dataset contains the hourly visit volumes of more
than 6 million POIs across the US and is collected
through various methods mainly based on mobile
phone devices (SafeGraph, 2020). These different POIs
could help describe both trip purpose and land use
within a census tract. After removing the abnormal
data points, empty rows, and outliers, the POIs
located within the City of Austin are extracted and
the visit volumes in the analysis window are aggre-
gated within each census tract. To simplify the model
and conclude which type of traffic demands are asso-
ciated with higher competition among shared micro-
mobility modes and public transit, all the 33,590 POIs
within the City of Austin are grouped into 9 catego-
ries considering similar purposes as shown in Table 2.

It is noteworthy that even though this study does
not consider the transfer between different traffic
modes, the category of transportation and motor
vehicle POIs consists of the visit volumes of transpor-
tation hubs, terminals, airports, and car rental compa-
nies, which can be used to estimate the impact of
other traffic modes. Summary statistics on each group
of POIs are provided in Table 2.

Further, publicly available census data from the
U.S. Census Bureau are utilized to represent the
demographic characteristics of each census tract. For
this analysis, three categories of information are col-
lected: individual information (e.g., gender, education,
birthplace, and occupation), household information
(e.g., household size, household type, number of
workers per household, and vehicle ownership), and
transportation-related information (e.g., time of
departure from home for commute, commute mode
of transportation, and commute travel duration).
There are a total of 69 demographic variables available
in this dataset. The demographic characteristics used
in the final models are provided in the “Results and
discussions” section.

Methodology

The methods used in this study are briefly described
in this section. First, a decomposition model to iden-
tify the difference in temporal travel patterns among
shared bikes, shared e-scooters, and public transit is
discussed. Next, geographically weighted regression to
explore the spatial relationship is presented.

Temporal variation analysis of each traffic mode

The temporal variations of each traffic model are first
explored individually and compared to each other. A
schematic figure of the temporal analysis is shown in
Figure 2. The temporal trip distribution on each day
of the week is first extracted from the datasets. Then,
the temporal variation of each day is decomposed into
three components with a decomposition model, which
is designed to identify the unique character of each
mode’s travel behavior pattern. The rationale is that
temporal variations in the data are the outcome of
multiple travel behaviors overlapping together. As
such, to understand the underlying travel behaviors,
the aggregated observations are decomposed into mul-
tiple parts. Finally, the proportions of each component
are calculated based on the decomposition results and
the characteristics of each traffic model are compared.

Table 2. POI footage dataset summary.
Groups Total visits No. of OPIs Average visits Visits Std.

Health care 9,563,082 6,827 7,001 33,171
Manufacturing and wholesale 630,527 357 469 4,230
Miscellaneous and grocery stores 26,611,822 5,856 20,208 89,466
Schools 7,721,565 2,812 5,628 23,528
Amusement and recreation 41,036,456 3,191 30,965 106,300
Transportation and motor vehicle 19,017,290 1,362 14,646 282,680
Food and drink 70,845,702 10,178 53,613 213,116
House maintenance 4,288,505 565 3,208 36,096
Public services 1,953,962 2,445 1,452 6,815
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The number of trips on a given day (Monday-
Sunday) is firstly grouped into bins of 15 mins and
averaged for the same day for all the available data. In
other words, the final data represent the average num-
ber of trips observed by a given mode, on a given day
(Monday–Sunday) for every 15 mins. Then, the total
weekly trip volumes of each mode are normalized to
be between 0 and 1 to make them comparable with
each other. The temporal variation is calculated as
Equation (1):

Cw tð Þ ¼ 1
CT

XN
i¼1

Ci,w t, t þ Dtð Þ (1)

where t is the time of day in units of hours; w ¼
1, 2, 3, ::: 7 represents Monday to Sunday; Cw tð Þ is
the temporal variation at time t, for day w; CT is the
total trip volumes of the analysis year; N is the num-
ber of weeks in the analysis year; Ci,wðt, t þ DtÞ is the
trip volumes of day w in ith week from time t to t þ
Dt; and Dt is 15 mins in this study.

Next, to quantitatively compare the temporal vari-
ation of each traffic mode, the daily trip curve is
decomposed into multiple curves (represented by dis-
tributions), each representing a major unique trip
behavior group in a day. The decomposed results offer
insights into the underlying patterns. A decomposition
model is implemented for each dataset (i.e., shared
bike trips, e-scooter trips, and public transit trips) as
in Equation (2):

C
�
tÞ ¼

XN
i¼1

diFiðtÞ (2)

where CðtÞ is the number of trips by a given mode
that occur at time t (in hours); N is the number of
components indexed by i (for example, if we decom-
pose the daily aggregated curve into morning peak,
afternoon peak and off-peak periods, we will have
N ¼ 3); FiðtÞ is the probability density function of
component i; and di is the coefficient of component i:
The components represent broad categories of types
of trips that happen, e.g., the morning commute,
afternoon commute, and general day trips. Here, even
though the data use discrete time steps, t is used as a
continuous variable such that continuous functions of
Fi tð Þ can be used.

According to the characteristics of the trip distribu-
tion, FiðtÞ can take different forms, such as normal,
lognormal, or Weibull distribution, etc. The normal
distribution performed very well on the three traffic
volume datasets and achieved comparable relative
error compared to the asymmetric lognormal distribu-
tion. The normal distribution has the simplest struc-
ture, which can improve the model efficiency
significantly compared to the other distributions.
Therefore, FiðtÞ is assumed to follow a normal distri-
bution for the morning peak, afternoon peak, and the
general day trips as Equation (3) in this study:

Fi tð Þ ¼ 1ffiffiffiffiffi
2p

p
ri
e
� t�lið Þ2

2r2
i (3)

where li and ri are the mean and standard deviation
of component i, respectively, in units of hours.

Figure 2. Scheme of temporal analysis.
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Spatial correlation analysis among different
modes

The common method to analyze the spatial correl-
ation among different traffic modes is regression mod-
els. For example, when analyzing the impact of the
shared bike and e-scooter trips on public transit rider-
ship, public transit ridership could be selected as the
dependent variable, and the trip volumes of shared
bike and e-scooter, along with other impact factors,
selected as explanatory variables. If a positive (nega-
tive) coefficient is estimated for the shared bike trip
volumes, this would imply that higher shared bike
usage stimulates more (less) public transit ridership,
indicating a complementary (competing) relationship
between shared bikes and public transit.

A global regression model as described above can
capture the general relationship between the explana-
tory variables and the response variable by assuming
these relationships are spatially independent. However,
for large cities like Austin, the topography, population
density, and land use type vary across different parts of
the city. Latent factors such as bus service accessibility,
topography, and operation policy that vary in a spatial
dimension can make these assumptions invalid. The
interactions between traffic modes could be influenced
by local characteristics. Thus, a more flexible model is
necessary to model these variations across different
geographic regions. Instead of estimating a constant
coefficient for each explanatory variable in a global
regression model, the geographically weighted regres-
sion (GWR) assigns a set of coefficients of explanatory
variables for each spatial unit (e.g., census tract in this
study). GWR is well-known for its capability to model
heterogeneity (e.g., non-stationarity) across different
areas and is widely used for traffic demand prediction.
The sub-model for each spatial unit can be expressed
as in Equation (4):

yj ¼
XN

k¼0

bjkxjk þ ej (4)

where yj is the dependent variable (e.g., number of e-
scooter trips) in the census tract, N is the number of
explanatory variables used in the model, xjk is the kth

explanatory variable in the census tract j, bjk is the
coefficient of the kth explanatory variable in the census
tract j and ej is the residual in the census tract j:

An ordinary least squares model (OLS) is also
developed for comparison as global analysis.
Traditionally, the coefficients of an OLS are estimated
using Equation (5); however, the coefficient estimation
in GWR is also impacted by the weighted neighbors
as shown in Equation (6):

b̂ ¼ XTXð Þ � XTy (5)

b̂j ¼ XTWjX
� �

� XTWjy (6)

where X is the input matrix, y is the output matrix,
and Wj is a matrix of weights specific to the census
tract j such that observations nearer to j are given
greater weights than observations further away.

The weights of these neighbors, Wj, follow a dis-
tance-decay function to emphasize the impacts of near
census tracts and to ignore the ones further than a
certain distance. Hence, the number of neighbors that
have influence, referred to as the bandwidth, also
needs to be selected. A small bandwidth may result in
an unstable fit in a small regional area, while a large
bandwidth may introduce bias, and neglect the
regional variation (Munira & Sener, 2020). The band-
width can be determined in two ways, either on a dis-
tance threshold or a specific number of neighbors.
The corrected Akaike Information Criterion (AICc) is
generally used as a criterion to evaluate the model
performance and, therefore, can be used to select the
optimal bandwidth that achieves the best model per-
formance. The AICc is calculated as Equation (7):

AICc ¼ 2k� 2ln Lð Þ þ 2k2 þ 2k
n� k � 1

(7)

where k is the number of estimated parameters in the
model, L is the maximum value of the likelihood
function, and n is the sample size of the dataset.

The model that achieves the lowest AICc is selected
as the best model and the corresponding bandwidth is
selected as the optimal bandwidth (Akaike, 1974). The
mathematical solution of the GWR can be found in
Brunsdon et al. (1998). For this work, an open-source
package named pysal/mgwr in the Python platform is
used to estimate the parameters (Oshan et al., 2018).
The outcome of GWR consists of a set of coefficients
for each census tract for each explanatory variable and
the corresponding R2 value which measures the good-
ness-of-fit.

Results and discussions

Individual characteristics of the shared bike, e-
scooter, and public transit

First, some basic statistics are calculated to understand
the general trends in the data. The average distance,
duration, and speed of an e-scooter trip are found to
be 1.51 km, 10.65 mins, and 9.60 km/h, respectively.
Compared to e-scooter trips, shared bike trips have a
longer average distance and duration and higher
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average speed of 2.62 km, 14.62 mins, and 12.14 km/h,
respectively. While the specific average speed of travel
by public transportation in Austin is not provided, the
average speed of travel by public transportation in the
United States is 22.69 km/h. Also, the average travel
distance on Capital Metro in Austin was 5.5 km
according to the APTA factbook (American Public
Transportation Association, 2020). Hence, the general
statistics suggest that micromobility is used on average
for shorter trips than public transit.

Details in the temporal variations of trips are
explored by aggregating trips taken by each mode into
bins of 15 mins considering the day of the week.
Then, the average trips in the analysis window for
each bin of each day of the week is determined to

understand the temporal distribution of each mode.
The temporal distributions of e-scooter, shared bikes,
and public transit across one week are shown in
Figure 3. Note that in Figure 3, 1-hour bins are used
for better visualization, but the 15-minute bins are
kept for the analysis.

As shown in Figure 3, the daily trip volume on
weekend days is higher than during weekdays for
micromobility modes but lower for the public transit
mode. The differences in the temporal distribution of
traffic modes could indicate that they are preferred to
be used for different travel purposes. To further
explore the possible travel purpose of these three traf-
fic modes, their temporal distributions are compared
to the temporal distributions of foot traffic of different

Figure 3. Temporal distribution of different traffic modes across one week. Data are normalized based on the total weekly trip vol-
ume and aggregated over the analysis window.
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types of POI. The average temporal distributions of
the three modes and 9 POI groups are extracted in 1-
hour bins over a given day (e.g., Monday–Sunday)
and normalized. The similarity between the trip pat-
tern of POIs and different temporal modes is meas-
ured by the Euclidean distance between the two
distributions, and the distance is shown in Figure 4.

From Figure 4, it can be seen that the temporal
patterns of shared e-scooter and shared bikes are simi-
lar to patterns of POI trips associated with food and
drinking, grocery stores, and house maintenance,
which is indicative of leisure purposes.

Next, the decomposition model for all seven days
of the week and all three traffic modes is implemented
considering three normally distributed components
(i.e., 21 different decompositions are estimated). The
decomposition models are estimated based on a bin of
15 mins to ensure the accuracy of the fitting curves.
Given the good fit of a three-component decompos-
ition model, the decomposition models are set to con-
sist of three components for all traffic models in this
study. The three components are assumed to mimic
morning peak, afternoon peak, and general day travel.
The results suggest that trends for weekdays share a
similar pattern, while trends for weekend days share
another pattern. Hence, to demonstrate the results of
the decomposition model for each traffic mode,
Tuesday and Saturday are chosen as typical weekday
and weekend days, respectively. To accommodate the
trips generated after 23:59 each day, the daily trip dis-
tributions are plotted from 6:00 to 5:59 (þ1 day) for
the shared e-scooter and shared bike, and from 4:00
to 3:59 (þ1 day) for public transit ridership. The fit-
ting curves are shown in Figure 5. In this figure, the
dashed lines represent the three different components,
while the solid lines represent their summation. The
real data are shown as a gray area. In general, it can
be seen that the morning peak appears as the left-
most distribution, and the afternoon peak appears as
the right-most distribution. In Figure 5(d,e), the
morning peak is not visible because it is very small.
Note that it is possible to have more than three com-
ponents in Equation (2). For example, Figure 5(e)
shows that there is another component of trips for

Figure 4. Euclidean distance between POI visit temporal pat-
terns and traffic mode usage patterns.

Figure 5. Normalized trip volume vs. time-of-day decomposition models. (The dashed lines show the results of the fitting curve
for each component, and the solid curves are the fitting curve for the entire day. The shaded areas represent the real data.).
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shared bikes around 2:00 am on Sunday. However,
since this early morning component (around 2:00)
only happens in shared bike trips during weekends
and is not observed in other traffic modes or on other
days, for simplicity, it was not considered in this
study.

Using the decomposition results, the percentages of
trips that account for the morning peak, afternoon
peak, and general day trips are calculated and shown
in Figure 6. The results suggest that public transit
exhibits a strong morning peak during the weekdays,
which is not the case for weekends. About 58% of the
public transit trips can be attributed to the morning
peak and afternoon peak components. The ratio of
the morning peak to the afternoon peak is also the
highest, about 0.65, which indicates a temporal sym-
metric distribution associated with commuting trips
(Bordagaray et al., 2016).

From the e-scooter trip decomposition results in
Figure 6, it can be found that 61% of all e-scooter
trips can be attributed to the afternoon peak compo-
nent. Additionally, the percentage of trips attributed

to the morning peak for e-scooters is very low com-
pared to other traffic modes, and the ratio of the
morning peak to the afternoon peak (0.09) shows that
e-scooter usage is asymmetric during the day. These
results also indicate that e-scooters are more likely to
be used as a leisure travel mode during the evening,
rather than as a commuting tool. Shared bike trips
also tend to be attributed to the afternoon peak com-
ponent; however, the ratio of the morning to after-
noon peak trips is slightly higher at 0.19. Also,
recalling that the shared bike mode has a longer trip
duration and travel distance, it can be concluded that
the shared bike mode is more frequently used for
commuting than e-scooters. Further, combined with
Figure 3 it can be observed that for both e-scooter
and shared bike trips, there is a slightly higher tail fol-
lowed by a shoulder in the evening (around 11 pm)
on Fridays and Saturdays. This indicates that micro-
mobility is likely chosen as a leisure travel mode for
weekend late evenings. These conclusions are consist-
ent with findings in the literature (McKenzie, 2019)
and further provide a quantitative comparison

Figure 6. Percentage of each component for different traffic modes.
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between the three traffic modes which indicate that
they have specific usage and travel patterns.

To summarize, the data indicate that public transit
is mainly used for commuting while micromobility
modes are mostly used for leisure activities in the
evening and on weekends. Specifically, shared bikes
are more likely to be used for commuting compared
to e-scooters. This quantitative analysis of each traffic
mode can help to distribute different traffic modes
and build a harmonious traffic network for the differ-
ent demands.

Spatial correlation among shared bike, e-scooter,
and public transit

Feature selection
All data are aggregated at the census tract level within
the entire analysis year to perform the spatial regres-
sion. After combining all available demographic char-
acteristics with the 9 POI categories, 78 potential
variables that might influence micromobility ridership
exist in the spatial domain. Including all of the poten-
tial variables in the model is not reasonable since the
true impact of individual variables cannot be shown.
The commonly used feature selection method in stat-
istical models is to manually select variables based on
their significance level, i.e., p-value. However, when
the number of potential variables is large, this could
be inefficient since it requires re-estimating the model
many times, and the interaction among different vari-
ables could be missed in this process. Therefore, a
Boruta feature selection, which is commonly used in
machine learning methods, is adopted to pre-select
the relevant variables. The Boruta method has two
advantages: (1) the effectiveness of each variable is
determined considering how they improve the model
compared to a randomized shadow of themselves,

hence variables do not compete with each other; and
(2) repetition—the results become robust through iter-
ations. The importance of each variable is determined
by considering the average results of all iterations
(Mazzanti, 2020). The selection is based on the demo-
graphic characteristics, general POIs information for a
given census tract, and the relevant micromobility or
public transit ridership. Based on the importance level
of variables from the Boruta feature selection, 13 vari-
ables that significantly impact e-scooter ridership, 12
variables that significantly impact shared bike rider-
ship, and 9 variables that significantly impact public
transit ridership are selected as shown in Table 3.

The feature selection results suggest that a few of
the variables impact the usage of all three modes con-
sidered, including a short travel time to work; no
vehicle ownership; and POIs related to amusement
and recreation, food and drinking, and miscellaneous
and grocery stores. Most of these POIs are associated
with leisure travel, which is consistent with the
literature.

As expected, it is found that public transit ridership
is also an important feature in determining the shared
e-scooter or shared bike usage. Other variables that
impact both shared e-scooter and shared bike usage
but do not impact public transit ridership are the
number of people who commute by taxicab, motor-
cycle, or bicycle; nonfamily type or single-person
households; households with a single vehicle; depart-
ure time from home; and number of visits to trans-
portation and motor vehicle POIs. Most of these
variables make sense as they can describe a need for
additional modes of transportation. Overall, the fac-
tors that impact e-scooter or bike ridership are very
similar but only differ in one variable, which is
whether people walk to work in a given census tract

Table 3. Selected features for e-scooter, bike, and transit usage prediction.

Variable name Description
Selected for model

E-scooter Bike Transit

Travel time: 5 to 9 mins # of people whose commute time is 5 to 9 mins � � �
No vehicle # of households that do not own a car � � �
POIs: amusement and recreation # of visits to amusement and recreation POIs � � �
POIs: food and drinking # of visits to food and drinking POIs � � �
POIs: miscellaneous and grocery stores # of visits to miscellaneous and grocery stores POIs � � �
Public transit Public transit ridership � � �
Transportation: motorbike, bike, or other # of people who commute by motorcycle, bicycle, or other. � � �
Household type: nonfamily # of nonfamily type households � � �
Household: 1 # of single-person households � � �
Vehicle: 1 # of households with one vehicle � � �
Leaving home: 830 859 # of people departing home between 8:30 and 8:59 am � � �
POIs: transportation and motor vehicle # of visits to transportation and motor vehicle POIs � � �
Transportation: walked # of people who walk to work � � �
Scooter trips #of shared e-scooter trips � � �
Bicycle trips # of shared bike trips � � �
POIs: public services # of visits to public service POIs � � �
Transportation: public transit or taxicab # of people who commute by public transit or taxicab � � �
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or not. This is reasonable since the average travel dis-
tance by shared bikes is longer than by e-scooters
and, in general, shared bikes are not expected to
replace walking trips as e-scooters do.

Four features are unique to transit usage, which are
scooter and bicycle trips, public service POIs, and the
number of people who commute by public transporta-
tion. In general, the features relevant to transit are
consistent with the literature and our expectation
(Syed et al., 2001; Taylor et al., 2009).

Geographically weighted regression results
To explore the spatial correlations among shared
bikes, e-scooters, and public transit, three GWR mod-
els are developed by selecting the shared bike trip vol-
umes, e-scooter trip volumes, and public transit
ridership as the response variable, respectively. The

results suggest that the shared bike model and the
shared e-scooter model are dominated by each other,
and the other variables become insignificant due to
the high correlation between shared bikes and shared
e-scooter usage. Hence, here only the results of the
Transit-GWR model, which considers public transit
ridership as the dependent variable and the other two
as independent variables, are considered. This transit
model, which takes the shared bike and e-scooter trip
volumes along with other impact factors as explana-
tory variables, demonstrates a relationship between
public transit usage and the other two micromobility
modes. These relationships help to depict a clear spa-
tial correlation pattern among these three public traf-
fic modes. The detailed specification and the results of
the model are introduced here.

The optimal bandwidth for the Transit-GWR
model is determined as 42 nearest neighbors using the
AICc criterion. For comparison, a global linear regres-
sion model is also estimated using the ordinary least
squares (OLS) method. In terms of fit, a higher log-
likelihood ratio was achieved for the Transit-GWR
model (�2213.78) as compared to the OLS model
(�2303.61) implying better fit. The Transit-GWR also
achieves smaller AICc values, (4556.97, compared to
4627.22 for OLS) and a higher average R2 (0.93, com-
pared to 0.78 for OLS), which suggests that the
Transit-GWR model outperforms the OLS model sig-
nificantly and achieves higher fitting performance.
The R2 for each census tract in the GWR model is
shown in Figure 7. From Figure 7, it can be seen that
the GWR model achieved high reliability in the center
and north areas of the City of Austin and most of the
census tracts have R2 larger than 0.8.

The coefficient estimations of the OLS results and
statistical summary of the Transit-GWR results are
shown in Table 4. The OLS estimation results show
that shared bike trips are positively correlated with
public transit with 95% confidence, but e-scooter trips
are found to have an insignificant impact on public
transit ridership in the global model. Different fromFigure 7. R2 distribution of the Transit-GWR model.

Table 4. Spatial regression results of Transit-GWR model.

Variables

OLS results GWR results

Coef. P>jzj Mean # Signif Coef # (þ) Coef. # (-) Coef.

Constant �36000 0.70 39600 22 20 2
Scooter trips �1.0 0.44 40.8 86 57 29
Travel time: 5 to 9 mins �288.4 0.41 �42.9 31 10 21
Bicycle trips 69.1 0.01 8701.5 87 53 34
POIs: public services 2.3 0.33 �0.7 37 6 31
POIs: miscellaneous and grocery stores 0.4 0.67 1.9 28 28 0
POIs: amusement and recreation 1.1 0.31 0.3 55 39 16
POIs: food and drinking 3.2 0 3.1 79 79 0
Vehicle: no 314.9 0.51 192.9 55 33 22
Transportation: public transit or taxicab 836.9 0.10 121.2 41 22 19
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the global model, the Transit-GWR model provides
more detailed insights. For the relationship between
shared bike usage and public transit ridership, instead
of a general positive correlation across the whole city,
the Transit-GWR model suggests that shared bike
usage is significantly correlated with public transit
ridership in 87 census tracts, in which 53 of these
have a positive correlation while the remainders indi-
cate a negative correlation. This suggests that the rela-
tionship between shared bike usage and public transit
ridership is not homogenous as the global model indi-
cates. Similar results are observed for the relationship
between e-scooter usage and public transit ridership
as well; the Transit-GWR model suggests that e-
scooter usage is significantly correlated with public
transit in 86 census tracts, and 57 of these have a
positive correlation. Those spatial variations of correl-
ation between micromobility modes and public transit
capture the impacts of regional factors, some of which
are present in the model. Most of the POI groups are
not evenly distributed across the city, such as public
service and amusement and recreation, and the pre-
ferred transportation mode as well as the expected
travel time to the workplace are substantially different
across census tracts. These differences are captured in
the GWR model by assigning different coefficients to
census tracts as shown in Table 4. Besides those dif-
ferences, the global model and GWR model also have
some consistent results for several impact factors. For
example, the OLS results suggest that the visit vol-
umes of food and drinking POI should be signifi-
cantly and positively correlated with public transit,
which is confirmed by the GWR results for 79 census
tracts.

Figure 8 shows the spatial distribution of the sig-
nificant coefficients of the GWR model. The most
pronounced conclusion is that the correlations
between public transit and shared micromobility
modes are different from east to west of the city,
where the shared bike and e-scooter have approxi-
mately reversed correlations with public transit. For
most census tracts where e-scooter ridership is posi-
tively correlated with public transit ridership, shared
bike usage is negatively correlated. This appears to
imply that only one of these micromobility modes,
either shared bike or e-scooter, will tend to serve as a
complementary mode to public transit based on spe-
cific local characteristics. E-scooter appears to be
more likely to be positively correlated with public
transit in the west of the City of Austin and negatively
correlated in the eastern areas. It was noteworthy that
the shared bike system in the City of Austin was

dominated by human-powered bikes during the ana-
lysis window in this study, and only a small portion
of those bikes are upgraded to electricity-powered
after 2020. Therefore, a possible explanation of this
spatial pattern is that the west of the City of Austin is
more mountainous and hence e-scooters are more
attractive in this region due to the electric power.
Other characteristics of the city also vary between the
east and west sides and may contribute to this pattern,
though. The demographic variables of 5 to 9 mins of
commuting time and households without vehicle own-
ership show a negative correlation with public transit
in the city center and a positive correlation in the
north and south areas. This is consistent with the
expectation that in the center of the city, more alter-
native modes exist, such as shared micromobility
which are more convenient and efficient than public
transit in a congested traffic network. Hence, travelers
might be more likely to use the shared e-scooter or
shared bike in the city center instead of public transit.

Discussion

This study analyzes the usage patterns of shared bikes,
e-scooters, and public transit, in a city where they co-
exist, from both individual and interacting perspec-
tives. The unique datasets and spatial regression
model used in this study allow us to offer insights
into the existing literature about shared micromobility
usage in urban areas.

First, the individual characteristics of shared bikes,
e-scooter, and public transit usage are highlighted
through temporal pattern analysis. The decomposed
components of a whole day’s trip distribution suggest
that public transit usage patterns mimic commuting
patterns, while shared micromobility modes exhibit trip
distributions that are not typical for commuting. Public
transit is more likely to be used during weekdays and
has a symmetric distribution on morning and after-
noon peaks, while the micromobility modes are more
preferred during the weekend, especially in the after-
noon and late evening. When comparing the temporal
usage pattern of shared bikes to e-scooters, shared
bikes demonstrate usage patterns more similar to com-
muting patterns than the e-scooter, evidenced by the
more pronounced morning and afternoon peaks.

The spatial interactions among shared bikes, e-
scooters, and public transit are then explored by
developing a set of GWR models for public transit
ridership considering the e-scooter, shared bike, POIs
visits, and demographic information. Instead of incor-
porating static public transit variables such as stop
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density or route density used in the literature, this art-
icle uses the trip volume of the public transit within
each census tract to reflect the dynamic demand of
public transit. The POI trip information is also
included in the model with the actual visit volumes
instead of POI density or other static land use indica-
tors. Those unique datasets improve the reliability of
the model results.

This study fills existing research gaps by providing
a detailed comparison of temporal and spatial charac-
teristics among shared bikes, e-scooters, and public
transit. Differing from the existing literature that ana-
lyzed the travel patterns and impacts of e-scooters and
shared bikes separately (McKenzie, 2019; Reck et al.,
2021; Younes et al., 2020), this study analyzes the
interactions among the two types of micromobility

Figure 8. Local coefficients of variables in the Transit-GWR model.
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modes and public transit within the same area. Some
literature concluded that the correlation between
shared bikes and public transit may be different
between short distance trips and long-distance trips
(Guidon et al., 2019; Kong et al., 2020; Levy et al.,
2019); this study shows that this division exists
between shared bike and e-scooter as well, where e-
scooters complement public transit in the west of the
City of Austin and shared bikes promote public tran-
sit usage in the eastern areas. This division might be
caused by demographic information, geographical
characteristics, or the electrical assistance of e-
scooters. These conclusions extend the understanding
of micromobility, especially for different interactions
with public transit.

Practical significance
The conclusions from this research can provide a data-
driven reference to multi-modal transportation practi-
tioners when developing and operating shared micro-
mobility systems. The results suggest that the
development of one type of shared micromobility ser-
vice requires careful consideration of the existing traffic
network to achieve maximum benefit. Land usage,
demographic information, and geographical information
could significantly influence users’ preferences. Shared
e-scooters and shared bikes share some similarities as
micromobility modes. However, they are still slightly
different for user groups, travel time, and trip purposes
due to the power system, convenience, flexibility, and
ability to ride a long distance. Based on the case of the
City of Austin, it is recommended that the shared e-
scooter should be distributed around recreation centers,
famous sites, and grocery stores, while shared bikes will
be more beneficial to be distributed around public tran-
sit stops, transportation hubs, and commercial business
districts to provide a connection between different
modes and service for the last mile commuting. In
mountainous areas, it is preferred to adopt some elec-
tric-powered modes, such as e-scooters and e-bikes.

The decomposition model and geographically
weighted regression developed in this study are based
on the specific datasets of Austin; however, the meth-
odology can be implemented using data from any
other city planning to adopt new shared micromobil-
ity programs or optimize the existing distribution of
those micromobility facilities.

Conclusions

This article analyzes spatiotemporal travel patterns of
two types of micromobility modes and their

interaction with public transit considering the impact
of POIs visit volumes and demographic information.
Specifically, the research gap of the different roles of
e-scooters and shared bikes when coexisting with pub-
lic transit is addressed. To do so, shared dockless e-
scooter and shared dockless bike data in the City of
Austin, Texas, in the United States are used. Since
both modes co-exist along with public transit in this
city, users can select different traffic modes freely and
thus can reflect the choices of two types of micromo-
bility modes in the background of public transit. The
results of the analysis of the individual characteristic
indicate that e-scooters are more likely to be used for
leisure trips than public transit and shared bikes based
on the temporal distribution of usage and the ratio of
the morning peak to the afternoon peak trips.
Similarly, shared bikes are also used for leisure trips
but appear to have more usage during peak hours,
too, compared to e-scooters. The Transit-GWR model
shows that, while e-scooter and shared bike usage are
highly positively correlated with each other, e-scooters
tend to complement public transit, particularly in the
western areas with more mountainous terrain, by pro-
viding a connector, collector, and distributor for the
public transit system. However, shared bikes are more
likely to complement public transit and promote it in
the east of the city, where the population is less afflu-
ent and public transit density is higher. These differ-
ences suggest that shared bikes and shared e-scooter
have different roles in relation to public transit con-
sidering the built environment and the demographics.

This article suggests that implementing a single
mode strategically could help improve access to public
transit, but when two of the micromobility modes co-
exist, residents could have a preference for one over
the other based on the specific regional environment.
In general, only one of these modes will complement
the public transportation system in a given area. Since
shared bikes and e-scooters attract users with different
travel purposes, the implementation of these modes to
complement public transportation can be chosen
based on land use, demographic, and terrain charac-
teristics in different areas. This work can inform local
policies that regulate micromobility with the goals of
reducing congestion and increasing environmental
sustainability.

A limitation of this work is the actual trip purpose
of the different traffic modes users was unknown. A
trip purposes survey in the future could help to exam-
ine the relationship between micromobility usage and
geographical information to derive more detailed rea-
sons for the different correlation distributions.

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 15



Disclosure statement

No potential conflict of interest was reported by the
authors.

ORCID

Muyang Lu http://orcid.org/0000-0001-6687-6986
Elizabeth J. Traut http://orcid.org/0000-0002-7962-4603
S. Ilgin Guler http://orcid.org/0000-0001-6255-3135
Xianbiao Hu http://orcid.org/0000-0002-0149-1847

References

Akaike, H. (1974). A new look at the statistical model iden-
tification. IEEE Transactions on Automatic Control, 19(6),
716–723. https://doi.org/10.1109/TAC.1974.1100705

Almannaa, M. H., Ashqar, H. I., Elhenawy, M., Masoud,
M., Rakotonirainy, A., & Rakha, H. (2021). A compara-
tive analysis of e-scooter and e-bike usage patterns:
Findings from the City of Austin, TX. International
Journal of Sustainable Transportation, 15(7), 571–579.
https://doi.org/10.1080/15568318.2020.1833117

American Public Transportation Association. (2020). 2020
Public Transportation Fact Book (71st Edition). https://
www.apta.com/wp-content/uploads/APTA-2020-Fact-
Book.pdf

AustinTexas.gov. (2022). https://www.austintexas.gov/
sharedmobility

Bai, S., & Jiao, J. (2020). Dockless e-scooter usage patterns
and urban built Environments: A comparison study of
Austin, TX, and Minneapolis, MN. Travel Behaviour and
Society, 20, 264–272. https://doi.org/10.1016/j.tbs.2020.04.
005

Bordagaray, M., dell’Olio, L., Fonzone, A., & Ibeas, �A.
(2016). Capturing the conditions that introduce system-
atic variation in bike-sharing travel behavior using data
mining techniques. Transportation Research Part C:
Emerging Technologies, 71, 231–248. https://doi.org/10.
1016/j.trc.2016.07.009

Brunsdon, C., Fotheringham, S., & Charlton, M. (1998).
Geographically weighted regression. Journal of the Royal
Statistical Society: Series D (the Statistician), 47(3), 431–
443. https://doi.org/10.1111/1467-9884.00145

Campbell, K. B., & Brakewood, C. (2017). Sharing riders:
How bikesharing impacts bus ridership in New York
City. Transportation Research Part A: Policy and Practice,
100, 264–282. https://doi.org/10.1016/j.tra.2017.04.017

Campbell, A. A., Cherry, C. R., Ryerson, M. S., & Yang, X.
(2016). Factors influencing the choice of shared bicycles
and shared electric bikes in Beijing. Transportation
Research Part C: Emerging Technologies, 67, 399–414.
https://doi.org/10.1016/j.trc.2016.03.004

Capital Metro. (2020). Open Data Portal. State of Texas
Open Data Portal. https://data.texas.gov/browse?Dataset-
Category_Agency=Capital+Metropolitanþ
Transportation+Authority&category=Transportation&
utf8=%E2%9C%93

Clewlow, R. R. (2019). The Micro-Mobility Revolution: The
Introduction and Adoption of Electric Scooters in the
United States (No. 19–03991). Article 19–03991.

Transportation Research Board 98th Annual Meeting.
https://trid.trb.org/view/1572549

Economic Development. (2018). Dockless Vehicle Trips:
Dockless Vehicle Trips [Application/xml]. 3KB. https://
doi.org/10.26000/030.000003

Gitelman, V., Pesahov, F., Carmel, R., & Chen, S. (2017).
Exploring the characteristics of potential and current
users of mobility scooters, among older people in Israel.
Transportation Research Part F: Traffic Psychology and
Behaviour, 46, 373–389. https://doi.org/10.1016/j.trf.2016.
07.010

Gu, T., Kim, I., & Currie, G. (2019). Measuring immediate
impacts of a new mass transit system on an existing
bike-share system in China. Transportation Research Part
A: Policy and Practice, 124, 20–39. https://doi.org/10.
1016/j.tra.2019.03.003

Guidon, S., Becker, H., Dediu, H., & Axhausen, K. W.
(2019). Electric bicycle-sharing: A new competitor in the
urban transportation market? An empirical analysis of
transaction data. Transportation Research Record: Journal
of the Transportation Research Board, 2673(4), 15–26.
https://doi.org/10.1177/0361198119836762

Hardt, C., & Bogenberger, K. (2019). Usage of e-scooters in
urban environments. Transportation Research Procedia,
37, 155–162. https://doi.org/10.1016/j.trpro.2018.12.178

Jordehi, B. A., Rose, G., & Thompson, R. G. (2013).
Motorcycle and motor scooter use in Victoria, Australia.
Transportation Research Record: Journal of the
Transportation Research Board, 2388(1), 61–70. https://
doi.org/10.3141/2388-09

Kong, H., Jin, S., & Sui, D. (2020). Deciphering the relation-
ship between bikesharing and public transit: Modal sub-
stitution, integration, and complementation.
Transportation Research Part D: Transport and
Environment, 85, 102392. https://doi.org/10.1016/j.trd.
2020.102392

Laa, B., & Leth, U. (2020). Survey of e-scooter users in
Vienna: Who they are and how they ride. Journal of
Transport Geography, 89, 102874. https://doi.org/10.1016/
j.jtrangeo.2020.102874

Levy, N., Golani, C., & Ben-Elia, E. (2019). An exploratory
study of spatial patterns of cycling in Tel Aviv using pas-
sively generated bike-sharing data. Journal of Transport
Geography, 76, 325–334. https://doi.org/10.1016/j.jtrangeo.
2017.10.005

Ma, T., Liu, C., & Erdo�gan, S. (2015). Bicycle sharing and
public transit: Does capital bikeshare affect metrorail
ridership in Washington, D.C.? World Transit. Research,
https://www.worldtransitresearch.info/research/5835

Ma, X., Zhang, X., Li, X., Wang, X., & Zhao, X. (2019).
Impacts of free-floating bikesharing system on public
transit ridership. Transportation Research Part D:
Transport and Environment, 76, 100–110. https://doi.org/
10.1016/j.trd.2019.09.014

Martin, E. W., & Shaheen, S. A. (2014). Evaluating public
transit modal shift dynamics in response to bikesharing:
A tale of two U.S. cities. Journal of Transport Geography,
41, 315–324. https://doi.org/10.1016/j.jtrangeo.2014.06.026

Mathew, J. K., Liu, M., Seeder, S., Li, H., & Bullock, D. M.
(2019). Analysis of e-scooter trips and their temporal
usage patterns. Institute of Transportation Engineers. ITE
Journal, 89(6), 44–49.

16 M. LU ET AL.

https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1080/15568318.2020.1833117
https://www.apta.com/wp-content/uploads/APTA-2020-Fact-Book.pdf
https://www.apta.com/wp-content/uploads/APTA-2020-Fact-Book.pdf
https://www.apta.com/wp-content/uploads/APTA-2020-Fact-Book.pdf
https://www.austintexas.gov/sharedmobility
https://www.austintexas.gov/sharedmobility
https://doi.org/10.1016/j.tbs.2020.04.005
https://doi.org/10.1016/j.tbs.2020.04.005
https://doi.org/10.1016/j.trc.2016.07.009
https://doi.org/10.1016/j.trc.2016.07.009
https://doi.org/10.1111/1467-9884.00145
https://doi.org/10.1016/j.tra.2017.04.017
https://doi.org/10.1016/j.trc.2016.03.004
https://data.texas.gov/browse?Dataset-Category_Agency=Capital+Metropolitan+Transportation+Authority&category=Transportation&utf8=%E2%9C%93
https://data.texas.gov/browse?Dataset-Category_Agency=Capital+Metropolitan+Transportation+Authority&category=Transportation&utf8=%E2%9C%93
https://data.texas.gov/browse?Dataset-Category_Agency=Capital+Metropolitan+Transportation+Authority&category=Transportation&utf8=%E2%9C%93
https://data.texas.gov/browse?Dataset-Category_Agency=Capital+Metropolitan+Transportation+Authority&category=Transportation&utf8=%E2%9C%93
https://trid.trb.org/view/1572549
https://doi.org/10.26000/030.000003
https://doi.org/10.26000/030.000003
https://doi.org/10.1016/j.trf.2016.07.010
https://doi.org/10.1016/j.trf.2016.07.010
https://doi.org/10.1016/j.tra.2019.03.003
https://doi.org/10.1016/j.tra.2019.03.003
https://doi.org/10.1177/0361198119836762
https://doi.org/10.1016/j.trpro.2018.12.178
https://doi.org/10.3141/2388-09
https://doi.org/10.3141/2388-09
https://doi.org/10.1016/j.trd.2020.102392
https://doi.org/10.1016/j.trd.2020.102392
https://doi.org/10.1016/j.jtrangeo.2020.102874
https://doi.org/10.1016/j.jtrangeo.2020.102874
https://doi.org/10.1016/j.jtrangeo.2017.10.005
https://doi.org/10.1016/j.jtrangeo.2017.10.005
https://www.worldtransitresearch.info/research/5835
https://doi.org/10.1016/j.trd.2019.09.014
https://doi.org/10.1016/j.trd.2019.09.014
https://doi.org/10.1016/j.jtrangeo.2014.06.026


Mazzanti, S. (2020). Boruta explained the way I wish some-
one explained it to me. Medium. https://towardsdatas-
cience.com/boruta-explained-the-way-i-wish-someone-
explained-it-to-me-4489d70e154a

McKenzie, G. (2019). Spatiotemporal comparative analysis
of scooter-share and bike-share usage patterns in
Washington, D.C. Journal of Transport Geography, 78,
19–28. https://doi.org/10.1016/j.jtrangeo.2019.05.007

M�edard de Chardon, C. (2019). The contradictions of bike-
share benefits, purposes and outcomes. Transportation
Research Part A: Policy and Practice, 121, 401–419.
https://doi.org/10.1016/j.tra.2019.01.031

Munira, S., & Sener, I. N. (2020). A geographically weighted
regression model to examine the spatial variation of the
socioeconomic and land-use factors associated with
Strava bike activity in Austin, Texas. Journal of Transport
Geography, 88, 102865. https://doi.org/10.1016/j.jtrangeo.
2020.102865

NACTO. (2020). Bike share and shared micromobility initia-
tive. National Association of City Transportation
Officials. https://nacto.org/program/bike-share-initiative/

Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., &
Fotheringham, A. S. (2018). mgwr: A Python implemen-
tation of multiscale geographically weighted regression
for investigating process spatial heterogeneity and scale.
In OSF Preprints (No. bphw9; OSF Preprints). Center for
Open Science. https://ideas.repec.org/p/osf/osfxxx/bphw9.
html

Pan, H., Shen, Q., & Xue, S. (2010). Intermodal transfer
between bicycles and rail transit in Shanghai, China.
World Transit Research, https://www.worldtransitresearch.
info/research/3808

Reck, D. J., Haitao, H., Guidon, S., & Axhausen, K. W.
(2021). Explaining shared micromobility usage, competi-
tion and mode choice by modelling empirical data from
Zurich, Switzerland. Transportation Research Part C:
Emerging Technologies, 124, 102947. https://doi.org/10.
1016/j.trc.2020.102947

Renub Research. (2020). Electric Scooter Market Global
Forecast by Country, Product, Battery Type, Company.
https://www.researchandmarkets.com/reports/4912095/
electric-scooter-market-global-forecast-by

SafeGraph. (2020). Places Data & Foot-Traffic Insights j
SafeGraph.com. https://www.safegraph.com/

Sanders, R. L., Branion-Calles, M., & Nelson, T. A. (2020).
To scoot or not to scoot: Findings from a recent survey
about the benefits and barriers of using E-scooters for
riders and non-riders. Transportation Research Part A:
Policy and Practice, 139, 217–227. https://doi.org/10.1016/
j.tra.2020.07.009

Singleton, P. A., & Clifton, K. J. (2014). Exploring synergy
in bicycle and transit use: Empirical evidence at two
scales. Transportation Research Record: Journal of the
Transportation Research Board, 2417(1), 92–102. https://
doi.org/10.3141/2417-10

Syed, S., & Khan, A, Government of North West
Territories, Canada. (2001). Factor analysis for the study
of determinants of public transit ridership. Journal of
Public Transportation, 3(3), 1–17. https://doi.org/10.5038/
2375-0901.3.3.1

Taylor, B. D., Miller, D., Iseki, H., & Fink, C. (2009).
Nature and/or nurture? Analyzing the determinants of
transit ridership across US urbanized areas.
Transportation Research Part A: Policy and Practice,
43(1), 60–77. https://doi.org/10.1016/j.tra.2008.06.007

Younes, H., Zou, Z., Wu, J., & Baiocchi, G. (2020).
Comparing the temporal determinants of dockless
scooter-share and station-based bike-share in
Washington, D.C. Transportation Research Part A: Policy
and Practice, 134, 308–320. https://doi.org/10.1016/j.tra.
2020.02.021

Zou, Z., Younes, H., Erdo�gan, S., & Wu, J. (2020).
Exploratory analysis of real-time e-scooter trip data in
Washington, D.C. Transportation Research Record:
Journal of the Transportation Research Board, 2674(8),
285–299. https://doi.org/10.1177/0361198120919760

JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS 17

https://towardsdatascience.com/boruta-explained-the-way-i-wish-someone-explained-it-to-me-4489d70e154a
https://towardsdatascience.com/boruta-explained-the-way-i-wish-someone-explained-it-to-me-4489d70e154a
https://towardsdatascience.com/boruta-explained-the-way-i-wish-someone-explained-it-to-me-4489d70e154a
https://doi.org/10.1016/j.jtrangeo.2019.05.007
https://doi.org/10.1016/j.tra.2019.01.031
https://doi.org/10.1016/j.jtrangeo.2020.102865
https://doi.org/10.1016/j.jtrangeo.2020.102865
https://nacto.org/program/bike-share-initiative/
https://ideas.repec.org/p/osf/osfxxx/bphw9.html
https://ideas.repec.org/p/osf/osfxxx/bphw9.html
https://www.worldtransitresearch.info/research/3808
https://www.worldtransitresearch.info/research/3808
https://doi.org/10.1016/j.trc.2020.102947
https://doi.org/10.1016/j.trc.2020.102947
https://www.researchandmarkets.com/reports/4912095/electric-scooter-market-global-forecast-by
https://www.researchandmarkets.com/reports/4912095/electric-scooter-market-global-forecast-by
https://www.safegraph.com/
https://doi.org/10.1016/j.tra.2020.07.009
https://doi.org/10.1016/j.tra.2020.07.009
https://doi.org/10.3141/2417-10
https://doi.org/10.3141/2417-10
https://doi.org/10.5038/2375-0901.3.3.1
https://doi.org/10.5038/2375-0901.3.3.1
https://doi.org/10.1016/j.tra.2008.06.007
https://doi.org/10.1016/j.tra.2020.02.021
https://doi.org/10.1016/j.tra.2020.02.021
https://doi.org/10.1177/0361198120919760

	Abstract
	Introduction
	Literature review
	Shared e-scooter travel and usage patterns compared to shared bikes
	Interaction between micromobility and other traffic modes
	Gaps in the literature

	Research objectives

	Data description
	Shared micromobility dataset
	Public transit dataset
	Supplemental datasets

	Methodology
	Temporal variation analysis of each traffic mode
	Spatial correlation analysis among different modes

	Results and discussions
	Individual characteristics of the shared bike, e-scooter, and public transit
	Spatial correlation among shared bike, e-scooter, and public transit
	Feature selection
	Geographically weighted regression results

	Discussion
	Practical significance


	Conclusions
	Disclosure statement
	Orcid
	References


