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ABSTRACT 

Micromobility, including e-scooters and bikes, has recently become a popular travel mode and 

rapidly proliferated across big cities. Appropriately modeling and evaluating the performance of 

micromobility in a multi-modal transportation system is critical to the design and operation of a 

transportation system. This research focuses on analyzing the performance of micromobility in three 

aspects, e.g., impact on travel demand, impact on traffic safety and impact on traffic operations.  

Firstly, the spatiotemporal trip characteristics of shared micromobility when operating in the same 

urban area with public transit and motorized vehicles are analyzed using data collected from the City 

of Austin. A decomposition model of the variations in daily trip volumes and a GWR model to reveal 

the spatiotemporal usage patterns of each mode are developed. The results reveal that temporal 

patterns of shared bike usage are more consistent with commuting compared to the temporal patterns 

of e‑scooters. From a spatial perspective, the results suggest that if e-scooter ridership complements 

public transit ridership in a census tract, shared bike ridership will show a competing effect with 

public transit, and vice versa. Overall, e-scooters and shared bikes with transit could reduce car trips 

and congestion if implemented carefully to improve environmental sustainability.  

Next, the impact of non-motorized modes on traffic safety is considered by incorporating use of 

non-motorized modes to macroscopic traffic safety models. A macro-level crash prediction model 

for the Manhattan area of New York City is developed that considers bike share trip information, 

roadway and demographic variables, subway flows, taxi movements, and person-trips to various 

points of interest (POI) as measures of travel exposure. The models are developed using negative 

binomial regression and various functional forms are considered. The spatial variation of the 

correlations between crash frequency and exposure variables are also explored with geographically 

weighted negative binomial regression. The results suggest that the number of shared bike trips and 
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POI visits are positively associated with an increase in pedestrian and cyclist crash frequencies; 

however, these features are less descriptive of motorist crash frequency. Considering the spatial 

interactions, the correlation between cyclists’ crash frequencies and exposure factors is generally 

homogeneous across the Manhattan area and is not significantly impacted by the local land use. On 

the other hand, pedestrian and motorist crash frequencies are more sensitive to the geographic 

features of an area.  

Finally, to measure the influence of bicycle trips on traffic operations, a mixed car-bike traffic flow 

model is proposed for an undivided two-way roadway based on the Lax-Hopf equation. Slow-moving 

bicycles are treated as a moving bottleneck in the proposed model. The impact of bike flow on traffic 

delay with different car and bike flows, different opposing traffic flows, and different level of 

uncertainties are evaluated based on the proposed model. The results show that the speed and flow 

of cars and bikes can significantly influence the expected traffic delay, and the specific interactions 

of shockwaves of queues play a large role in the expected total delay in a homogeneous traffic 

environment. By comparing the total delay to a scenario with a dedicated bike lane, the domains of 

application of shared vs. dedicated bike lanes can be identified. As the speed reduction resulting from 

implementing a dedicated bike lane reduces, or the opposing traffic flow reduces, the threshold of 

bike flow that can achieve lower total traffic delay by implementing a dedicated bike lane increase. 

The proposed method can help improve traffic in environments where cars and bikes coexist. 
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1 INTRODUCTION 

Micromobility, such as bicycles, e-bikes, e-scooters, and e-skateboards, are a range of small, 

lightweight vehicles that are typically operated at speeds below 25 km/h by individual users. While 

these modes have been used frequently, recently they have become more popular as shared mobility 

options. In 2008, Washington, D.C. launched the first modern bike-share system in the U.S. named 

smartBike DC, a 10-station, 120-shared bike pilot program. Since 2010, over 343 million trips have 

been taken in the U.S. by micromobility (NACTO, 2020). E-scooters have seen a large increase in 

popularity since 2018 and the e-scooter market is expected to grow to be more than $30 Billion by 

2025 (Renub Research, 2020). As micromobility becomes a mainstream transportation mode, its 

impact on the transportation system could become even more significant and diverse. Thus, an 

appropriate policy that seamlessly accommodates these modes into the existing traffic environment 

is important to a city. 

Shared bike, shared e-scooter and public transit are the major non-automobile transportation modes 

used in urban areas for commuting and leisure trips. Despite the apparent similarity of shared e-

scooters and shared bikes, these two micromobility modes have significant differences related to the 

users’ travel patterns and behaviors. Therefore, they are usually unevenly distributed across different 

areas and serve different roles when jointly participating in a multi-modal transportation network, 

especially when complementing or competing with public transit. Understanding the temporal and 

spatial characteristics of multiple micromobility modes that coexist with public transit can help 

improve policy making in cities, however, this knowledge is lacking from the existing literature.  

Despite the opportunities that shared micromobility modes bring to mobility, the interaction of 

multiple modes in the same urban space creates unique safety challenges. Therefore, a successful 

shared micromobility adoption strategy requires to achieve the balance between benefits and safety. 

Hence, it is important to model the impact of these modes on overall safety. perhaps due to data 
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availability, existing traffic safety models tend to use only exposure attributes related to vehicular 

traffic and rarely include exposure attributes related to non-motorized travel. Those that do consider 

non-motorized travel only include at most one explanatory variable.  

Another major impact from micromobility on the existing traffic system is its impacts on traffic 

efficiency. Despite the improvement in infrastructure and many newly installed dedicated bike lanes, 

there are still a lot of undivided two-way roads where bikes share the same road with motorized 

vehicles, and more interactions between bikes and cars occur. Cyclists, including the riders of 

traditional bikes and electrical bikes, usually move slower than cars and are extremely vulnerable. 

For a two-lane roadway, cars need to borrow the opposing lane to pass a slow-moving bike while 

maintaining a safe distance. When there are no gaps in the opposing lane, cars cannot pass the bike 

and the bike becomes a moving bottleneck. In this situation, the bike can lead to car delays. The 

interactions between cars and bikes on two-directional roadway, where bikes would have the most 

impact on car traffic, have not been studied in the literature. Further, there are no analytical tools to 

evaluate the need for a dedicated bike lane considering total system delay.  

The goal of this dissertation is to systematically evaluate micromobility in a multi-modal 

transportation system from three aspects, e.g., impact on travel demand, impact on traffic safety and 

impact on traffic operations. Specifically, the impact of shared micromobility on travel demand will 

be analyzed based on the spatial interactions of shared bike, shared e-scooter and public transit and 

to explore their different roles in a multi-modal transportation system. The impact on traffic safety 

will be evaluated by incorporating several exposure metrics that capture non-motorized and public 

transportation use, such as roadway and demographic variables, as well as bike share trip information, 

subway flows, taxi movements, and person-trips to various points of interest (POI) as measures of 

travel exposure, at the census-tract level. Finally, impact on traffic operation will be explored by 

proposing a multimodal approach to understanding the impacts of bikes on traffic flow, using a 

macroscopic car-bike mixed traffic flow model based on the Lax-Hopf equations. The impact of 
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slow-moving bikes on traffic delay will be quantified thereby. 

The remainder of the dissertation is organized as follows. First a comprehensive literature review will 

be conducted, and the research objectives will be identified in the rest of this chapter. Then, the 

interaction between shared micromobility and public transit, the impact of shared bike on traffic 

safety, and impact of bikes on traffic efficiency are studied in the following three consecutive 

chapters. Finally, the major conclusions from this study are summarized in the last chapter. 

1.1 LITERATURE REVIEW 

The literature review aims at providing background information on multimodal trip characteristics, 

multimodal traffic safety and multimodal traffic analysis. To this end, the multimodal trip 

characteristics are discussed in two subsections: 1) comparing shared e-scooter to shared bikes, and 

2) interaction between micromobility and other traffic modes. The traffic safety literature is presented 

in three subsections that first describe general information on traffic crash frequency models and 

variables considered in crash frequency modeling. Next, specific literature on multi-modal traffic 

safety models is discussed. Finally, the multimodal traffic analysis literature is discussed in three 

subsections that include information on general traffic flow modeling, followed by car-bike mixed 

traffic flow modeling and implementation of dedicated bike lanes.  

1.1.1 Shared e-scooter travel and usage patterns compared to shared bikes. 

Shared e-scooters have many characteristics in common with shared bikes such as use in urban areas, 

flexibility, convenience, and can be docked or dockless. However, e-scooters have some distinctive 

features, including requiring fewer riding skills, less bike-friendly clothing requirements, and limited 

driving range. Studies show that shared e-scooter users typically skew young, and affluent (Laa and 

Leth, 2020), and achieve greater gender parity compared to docked bike sharing services (Clewlow, 

2019). However, the low deck and safer performance of e-scooters make this mode more user-

friendly for older users as well compared to shared bikes (Gitelman et al., 2017). A survey-based 

study found that, compared to motorized bicycles, e-scooters statistically have a shorter travel 
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distance (Jordehi et al., 2013); another study conducted in Indianapolis found that more than half of 

trips taken by e-scooters were less than 10 minutes long and travelled less than one mile (Mathew et 

al., 2019). E-scooter trips were also found to have lower speeds compared to e-bikes (Almannaa et 

al., 2021).  

Due to the different characteristics, the trip purposes of shared e-scooters and shared bikes are 

different: shared e-scooters are more likely to be used for leisure trips while shared bikes tend to be 

used for commuting (Gitelman et al., 2017; Hardt and Bogenberger, 2019; McKenzie, 2019; Zou et 

al., 2020). Different dock types also lead to different travel purpose, where docked micromobility 

modes are more preferred for commuting. Studies further concluded that the usage patterns of shared 

e-scooters are more similar to usage patterns of non-member bike-share users compared to member 

bike-share users (Reck et al., 2021; Younes et al., 2020). Further, weather was observed to be less of 

a disutility for shared e-scooter users than for bike-share users, regardless of membership type. The 

temporal usage patterns of shared e-scooters were found to vary based on location, e.g., in Austin the 

largest shared e-scooter volumes were observed during afternoon and weekends, while in 

Minneapolis the largest volumes were experienced during the evening (Bai and Jiao, 2020). 

1.1.2 Interaction between micromobility and other traffic modes. 

Micromobility can benefit the general traffic network, e.g., by providing an alternative transport 

mode to motorized vehicles, providing last-mile connectivity with public transit, or complementing 

other modes of transport (Médard de Chardon, 2019). Understanding how micromobility 

complements and competes with other traffic modes is crucial to the understanding of a multi-modal 

transportation systems. 

Typically, shared bike systems, shared e-scooters, and public transit are modes that are used for 

similar purposes. Various studies have tried to understand the interactions between these modes. 

Survey-based studies found that shared e-scooters, similar to shared bikes, mostly replace walking 
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and public transport for short distance travel (Hardt and Bogenberger, 2019; Laa and Leth, 2020; 

Sanders et al., 2020). Studies also concluded that bike share systems can complement public transit, 

e.g., by serving as the first-and-last mile solution (Ma et al., 2015; Pan et al., 2010), or substituting 

for public transit by replacing short distance trips (Campbell et al., 2016; Campbell and Brakewood, 

2017; Guidon et al., 2019). These effects can vary both spatially and temporally (Kong et al., 2020; 

Ma et al., 2019). From the temporal perspective, it was found that the correlation between dockless 

shared bikes and public transit varies from weekdays, when there is a positive correlation, to 

weekends, when there is a negative correlation (Kong et al., 2020; Ma et al., 2019). Another study 

found that bikes and public transit substitute each other for short-term trips, e.g., individual trips, but 

complement in the long-term, e.g., considering multiday or multi-season results (Singleton and 

Clifton, 2014). From the spatial perspective, a survey conducted in Washington D.C. and 

Minneapolis found that the direction of mode shift between shared bike and public transit depends 

on demographic attributes such as age, gender, commute distance, and location of residences (Martin 

and Shaheen, 2014). It was also found that the introduction of a new transit system can influence 

shared bike usage (Gu et al., 2019). There are only few studies that analyzed the interaction between 

public transit and e-scooter usage. One recent study found that transit accessibility increased shared 

e-scooter usage (Bai and Jiao, 2020). Further, a few different works have considered the interaction 

between shared bikes and public transportation to understand how the presence of the two modes 

together could change their ridership (Campbell et al., 2016; Campbell and Brakewood, 2017; 

Guidon et al., 2019; Ma et al., 2019; Pan et al., 2010). 

1.1.3 Traffic crash frequency models 

Research that analyzes the impact of influential factors on traffic crash frequency can be categorized 

into two groups: micro-level and macro-level. Micro-level studies focus on relationships between 

crash frequency on individual roadway elements (i.e., roadway segment or intersections) and features 

associated with that element. The explanatory variables included in such micro-level models include 
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geometric characteristics (Anastasopoulos et al., 2012; Gooch et al., 2018, 2016; Jung et al., 2014; 

Zhang et al., 2020), traffic volume (Zhang et al., 2020; Jung et al., 2014; Anastasopoulos et al., 2012; 

Gayah and Donnell, 2021; Roque and Cardoso, 2014; Bao et al., 2019; Caliendo et al., 2013), 

infrastructure condition (Caliendo et al., 2013), and weather (Bao et al., 2019; Cheng et al., 2017; 

Jung et al., 2014). The outcome of micro-level crash prediction models provides the predicted crash 

frequency on any individual roadway element. On the other hand, macro-level studies seek to relate 

the average crash frequency within a given geographic area—such as a city, a borough, or a census 

tract—with features associated with the region. These models consider demographics, land use, 

socioeconomics, and transportation infrastructure information as input and predict crash frequency 

within the region (Wang et al., 2019). The present study focuses on macro-level crash prediction and 

how it might be influenced by multi-modal travel demand patterns and emerging mobility services.  

1.1.4 Impact factors of crash frequency 

Many researchers have studied the impacts of different factors on crash frequency at the macroscopic 

scale. Such macroscopic models usually utilize Poisson or negative binomial (NB) models to account 

for crash data that can only take integer values (Islam et al., 2022; Mahmud and Gayah, 2021; 

Sengupta et al., 2021). However, such models do not account for the spatial interactions between the 

variables. Further, existing macroscopic safety models mostly rely on traditional vehicular-based 

explanatory variables (Bao et al., 2019; Jia et al., 2018; Reynolds et al., 2009). Only a few studies 

have considered area-wide measures of exposure that may include both vehicular and non-vehicular 

traffic. For example, one study evaluated the impact of person-trips to specific points-of-interests 

(POIs) on traffic crash frequency and found that densely visited areas, such as residential areas, banks, 

and hospitals, are associated with increased crash frequency (Jia et al., 2018). Another study 

considered the impact of transportation infrastructure on bicycling injuries and crashes and concluded 

that the presence of sidewalks, multi-use trails, and major roads were associated with increased 

bicyclist crash risk, while the presence of a bicycle facility decreased the crash risk (Reynolds et al., 



7 

2009). Besides those non-vehicular traffic factors mentioned above, vehicular factors such as traffic 

flow are tightly related to crash frequency as well, and often used as explanatory variables in 

macroscopic safety models (La et al., 2013).  

1.1.5 Impact of shared bikes on traffic safety 

Shared bikes have recently become more popular and can help improve mobility in a city; however, 

the impacts on safety are unknown. The major known impacts of shared bike trips include mode 

substitution from private cars, public transit, and walking (Buck et al., 2013; Shaheen et al., 2013; 

Song et al., 2020; Zhang and Zhou, 2019), congestion mitigation (Buck et al., 2013; Shaheen et al., 

2013; Wang and Zhou, 2017) and environmental benefits (Shaheen et al., 2013; Zhang and Mi, 2018). 

Unfortunately,  cyclists are often some of the most vulnerable users on the roadway network (David, 

2016; Guler and Grembek, 2016). In general, the safety of bicyclists has been extensively studied in 

the literature, generally in the context of safety in numbers. The main goal of these studies is to 

examine if bicyclists (or pedestrians) become safer as more of them are present on the roadway 

(Jacobsen, 2003; McAndrews, 2012; Pucher and Dijkstra, 2003). These studies have mixed 

conclusions on whether an increase in the number of bicyclists can reduce crash risk – Jacobsen and 

Pucher concluded that a motorist is less likely to collide with a person walking and bicycling if more 

people walk or bicycle. Policies that increase the numbers of people walking and bicycling appear to 

be an effective route to improving the safety of people walking and bicycling. However, McAndrews 

found that whereas motor vehicle occupants account for the highest share of fatalities in the region, 

pedestrians and bicyclists have the highest risk relative to their mobility. A recent study that has 

considered shared bikes specifically has shown that shared bikes might have a lower crash risk 

compared to traditional cycling, due to the better structural design of the bikes, more noticeable 

colors, reflectors, and lights, and lower speed limited by the gear ratio (Zheng and Li, 2020). 

However, the impacts of shared bike trips while controlling for other factors such as POI visits, taxi 

trips, etc. on bicycle, pedestrian, or motorcyclist crashes remains unknown.  
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1.1.6 Traffic flow modeling 

The focus of this work is to analyze mixed car-bike flow on two-lane roadways where cars need to 

cross over to the opposing traffic lane to pass a bike. The mixed car-bike traffic flow is modeled at 

both the microscopic and macroscopic levels in this work. Typically, microscopic level traffic work 

considers individual entities such as the social force model for pedestrians (Qu et al., 2017), cellular 

automata model (Chen and Wang, 2016) or car following models (Li and Sun, 2012) for cars, and 

agent-based models for traffic demand (Agarwal et al., 2015). The macroscopic approach, on the 

other hand, considers parameters of homogenous traffic aggregated over time or space, such as traffic 

flow, density, or average speed. The macroscopic approach is computationally more efficient to 

determine expected traffic delay based on the traffic condition in a given time-space domain. The 

fundamental macroscopic traffic model, the Lighthill and Whitham and Richards (LWR) model, is a 

first-order kinematic wave model that describes traffic states between traffic flow and density, where 

the speed of traffic is determined through the fundamental diagram (Lighthill and Whitham, 1955; 

Richards, 1956). Many solutions to the LWR model have been proposed over the past decades, such 

as finite difference method (Godunov and Bohachevsky, 1959), the cell transmission model 

(Daganzo, 1994), the Lax-hopf Equation (Daganzo, 2005), etc. The Lax-Hopf equations is widely 

used for traffic flow modeling (Costeseque, 2018; Vishnoi and Claudel, 2022).  Recently, a fast 

simulation framework to solve the dynamic Lax-Hopf function (Hopf, 1969; Lax, 1957) has been 

proposed (Claudel and Bayen, 2010a, 2010b). In this solution, the cumulative count at each time-

space combination is determined as the minimum value resulting from a series of conditions. The 

internal conditions, which represents a series of moving bottlenecks, were then also incorporated in 

the Lax-Hopf framework ((Simoni and Claudel, 2020). This algorithm was made computationally 

efficient by discarding some of the operations associated with internal conditions. More recently, the 

Lax-Hopf equations has been utilized to incorporate slow-moving bus as internal conditions in a bus-

car mixed traffic flow (Wu et al., 2020).  
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1.1.7 Car-bike mixed traffic flow modeling 

To address the impact of bikes on traffic flow in a macroscopic framework, studies focused on 

modeling the speed change of vehicles in mixed traffic flow. One study developed two-dimensional 

speed functions to model the speed changes of cars when overtaking a bike (Wierbos et al., 2018). In 

that work, it is assumed that cars and bikes share the same road, that bikes are allowed to pass a car 

queue freely and cars can pass a bike at reduced speed. Another work considered the impact of bikes 

on traffic speed and concluded that bike lane-sharing behavior significantly influenced the 

equilibrium speed-density relationships in the LWR model (Chunchu and Kuzhiyamkunnath, 2014). 

Another line of work considered the modeling of non-lane-based heterogeneous traffic flow, where 

several classes of vehicles with different desired speeds share the roadway (Metkari et al., 2013). In 

this non-lane-based scenario, the roadway geometry, prevailing traffic conditions, and static and 

dynamic properties of vehicles in the traffic stream dominate the traffic (Khan and Maini, 1999). 

Overall, all existing macroscopic approaches to model mixed traffic flow are based on wide lanes, 

where cars and bikes can be in the same lane laterally side-by-side, which enables easy overtaking.  

1.1.8 Implementation of dedicated bike lane 

Creating a dedicated bike lane is a common approach to diminish the car-bike interactions. Several 

objectives have been considering when determining where to implement bike lanes on a network. 

These include a utility function that considers the trade-off between coverage of bike trips and 

continuity of bike lanes (Liu et al., 2021), budget, ease of construction, expected bike lane utilization 

(He et al., 2020), overall traffic cost, distance and time (Barwaldt et al., 2014). These studies did not 

consider the negative impact of bike lanes on general traffic. To the author’s knowledge only one 

paper considered both the benefits to the cyclists and potential dis-benefit to the normal traffic flow 

of bike lanes (Mesbah and Thompson, 2011). However, this study was based on the user behavior 

choice model where utility functions were used to measure the cost of using different paths but didn’t 
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quantify the impact of bike lanes on the traffic efficiency. 

1.2 RESEARCH GAPS 

To summarize, the literature typically has focused on the travel and usage patterns of shared bikes or 

shared e-scooters considering temporal or spatial variations. Most of these works have considered 

systems where either shared bikes or e-scooters operate individually (not together) and have 

identified the differences in travel behavior between shared bikes and shared e-scooters. To the 

author’s knowledge, there are no studies that analyze the spatial interaction among shared bike, 

shared e-scooter, and public transit within the same city. Here, interactions may include competition, 

where one mode competes or replaces another, or complement, where travelers must rely on two or 

more than two modes to complete their trips. Given the unique characteristics of shared e-scooters 

and shared bikes, it is necessary to consider the differences between them when complementing or 

competing with public transit to better distribute them across the city. For the macroscopic traffic 

safety models that predict crash frequency over regions of a transportation network, perhaps due to 

data availability, these models tend to use only exposure attributes related to vehicular traffic and 

rarely include exposure attributes related to non-motorized travel. Those that do consider non-

motorized travel only include at most one explanatory variable. With respect to mixed traffic flow 

modeling in the presence of slow-moving bikes, the interactions between two directional car-bike 

mixed traffic flows have not been studied in the literature, especially when cars need to borrow space 

from the opposing direction to pass a bike. Additionally, the domains of application of bike lanes 

from a systems perspective, e.g., considering total delay as the sum of bike and car delay, has also 

not been developed. 

1.3 RESEARCH OBJECTIVES 

Based on the research gaps, this research will extend the current literature by conducting systematic 

research surrounding three aspects, e.g., traffic demand, traffic safety, and traffic operation. Three 
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main goals will be achieved by doing three tasks in this research.  

1. Interactions among shared bike, shared e-scooter and public transit 

This task is to explore the interaction amongst three non-automobile transportation modes, e.g., 

shared bike, shared e-scooter, and public transit, that operate within the same urban area. This goal 

is accomplished by using data from Austin, TX. First the individual spatiotemporal characteristics of 

shared bike, shared e-scooter and public transit are summarized, and then the spatial interaction 

among these three modes is modeled considering demographic factors and general trip purposes. 

2. Impact of Shared bike on Traffic Safety 

The second task to incorporate the impact of shared bike trips on safety performance from a 

macroscopic (i.e., regional) perspective while taking into account spatial interactions. Traditional 

explanatory factors—such as traffic network characteristics, roadway network information, and 

demographics—are also incorporated, along with a novel exposure metric—person trips to various 

points of interest—to develop a macro-level safety performance function utilizing a geographically 

weighted negative binomial model for the Manhattan area of New York City. The conclusions will 

be helpful to understand the relative impacts of these factors on crash risk and contribute to the 

understanding of how shared mobility services might influence safety performance.  

3. Car-bike mixed traffic flow modeling 

The last task of this study is to propose a macroscopic car-bike mixed traffic flow model to evaluate 

the impact of bikes on traffic operations. Specifically, the objectives include 1) to develop a mixed 

car-bike traffic flow model based on the Lax-Hopf equations considering traffic flow in two 

directions, 2) to quantifying the overall delay caused by bike flow and evaluate the impact of key 

traffic flow parameters on the total delay, and 3) to evaluate the traffic efficiency with and without 

dedicated bike lanes to recommend the application domain of dedicated bike lanes. 
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2 SHARED MICROMOBILITY AND PUBLIC TRANSIT 

Shared bike, shared e-scooter, and public transit make up most public transportation modes in big 

cities. Their combination can provide a convenient, efficient, and flexible multi-modal transportation 

service. Despite the obvious similarity among them, differences exist in the roles that they play in a 

multi-modal transportation system. A case study in the City of Austin, where shared bike, shared e-

scooter and public transit coexist, is used to explore the unique characteristics and how they spatially 

complement or compete with each other.  

2.1 DATA DESCRIPTION 

In this research, the open access trip datasets from the City of Austin, Texas, in the United States is 

used. The dataset includes both shared bikes and shared e-scooters operating within a network also 

served by public transit, and thus provides a unique opportunity to observe the interactions between 

multiple modes. It should be noted that different cities may have different preference of shared 

micromobility service based on their own demographics, geography, and policy regulation. Some 

cities are dominated by shared bike, such as Houston, New York, and Miami, while others are 

proliferated with shared e-scooter, such as San Antonio. Comparison of shared bike and shared e-

scooter between different cities is not meaningful since they are highly influenced by the local 

characteristics. Only few cities have a relatively balanced development of shared bike and shared e-

scooter at the same time, and the City of Austin is an example of them, and thus becomes a good 

target city for this research.  

All datasets are collected in a same time range, e.g., from September 1, 2018, to September 1, 2019, 

to make them comparable and to rule out the impacts of the COVID-19 pandemic. The origins and 

destinations of trips from all traffic modes, e.g., shared e-scooter, shared bike, and public transit, are 

aggregated at the census tract level based on the availability of data.  
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2.1.1 Shared micromobility dataset 

The Shared Micromobility Vehicle Trips dataset contains reports of shared dockless electric powered 

scooter (e-scooter) or shared dockless bike trips provided to the City of Austin Transportation 

Department as a part of the Shared Small Vehicle Mobility Systems operating rules (Economic 

Development, 2018). There is only one type of two-wheeled standing shared e-scooter that operates 

in the City of Austin, and all of the e-scooter data is available in the Shared Micromobility Vehicle 

Trips dataset. On the other hand, there are two types of shared bike services, e.g., the shared dockless 

bike, which are operated by companies such as Bird, Lime, and the shared docked bike is operated 

by B-Cycle (now renamed as MetroBike) (“AustinTexas.gov,” 2022). The Shared Micromobility 

Vehicle Trips only includes data from the first of these two services. In 2019 only 12 out of 158 

census tracts, mainly in and around downtown, had shared docked bikes, while 97 census tracts had 

dockless shared bikes. Therefore, this study only takes the shared dockless bike trips into 

consideration to represent the shared bike trips. Further, the shared bike system in the City of Austin 

was mostly comprised of regular human-powered bikes during the analysis window in this study, and 

only a small portion of those bikes were upgraded to electricity-assisted after 2020.  

This dataset contains the vehicle type, start time and end time, trip duration and distance, as well as 

the start and end census tract of each trip, starting from April 2018. A sample of this dataset is shown 

as Table 2-1.  

 
Table 2-1 Samples of shared micromobility dataset 

 

ID 
Vehicle  

Type 

Trip  

Duration  

(sec) 

Trip  

Distance  

(m) 

Start Time End Time 
Census Tract  

Start 

Census Tract  

End 

1 scooter 570 826 4/29/19 17:15 4/29/19 17:15 48453001100 48453001100 
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2 scooter 438 1815 4/29/19 17:30 4/29/19 17:45 48453000601 48453000500 

3 scooter 391 1519 4/29/19 17:30 4/29/19 17:30 48453000401 48453000307 

4 bicycle 153 0 4/29/19 17:00 4/29/19 17:00 48453000604 48453000604 

5 scooter 570 1843 4/29/19 17:30 4/29/19 17:45 48453001100 48453001100 

6 scooter 668 2829 4/29/19 17:15 4/29/19 17:30 48453000603 48453001200 

7 bicycle 390 1283 4/29/19 17:30 4/29/19 17:45 48453001100 48453002304 

8 bicycle 432 1698 4/29/19 17:30 4/29/19 17:30 48453000601 48453000603 

9 scooter 196 796 4/29/19 17:15 4/29/19 17:30 48453000603 48453000603 

10 scooter 622 3010 4/29/19 17:15 4/29/19 17:30 48453001505 48453001818 

 

The dataset is cleaned to remove rows containing empty values, distances less than or equal to zero 

or larger than 20 km, durations less than or equal to zero or larger than 2 hours, and incorrect formats, 

which eliminated 0.37% of the data. After this data cleaning, the dataset spans September 1, 2018, to 

September 1, 2019, and contains a total of 7.03 million trips, of which 6.68 million are e-scooter trips 

and 0.35 million are shared bike trips. Even though the shared e-scooter and shared bike trip columns 

are not well-balanced, the sample sizes are sufficient to reflect the spatial pattern of each of them. 

The spatial distribution of the origins of the micromobility trips in the City of Austin is shown in 

Figure 2-1a. From this figure it can be observed that micromobility trips are mostly concentrated 

within the center of the city. 
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          (a) Micromobility               (b) Public Transit 

Figure 2-1 Spatial distribution of different traffic modes in the City of Austin 

 

2.1.2 Public transit dataset 

Capital Metro is the City of Austin's regional public transit provider with services including bus, 

shuttles, and freight rail. The Capital Metro Automatic Passenger Counter (APC) Ridership dataset 

is obtained directly from the Automatic Vehicle Location System (AVL) installed on buses (Capital 

Metro, 2020). Each row contains the specific bus door open and close time at each stop accompanied 

by the geographic coordinates and the number of passenger that board and alight through all doors at 

this stop. Samples of the APC dataset are shown in Table 2-2, with key attributes collected from three 

times alighting and boarding process at the stop. The raw APC data contains abnormal records; 

therefore, a data cleaning and pre-processing were adopted first. The APC data is available from 

January 1, 2016, to December 31, 2019. However, due to service changes or missing data, some of 

the bus routes do not have complete data during this period. When bus routes with more than 5 months 

of missing data are removed, 57 bus routes remain, and these bus routes account for the majority 

(96%) of the total passenger volumes across the City of Austin. Therefore, the analysis is conducted 

using the number of alighting passengers on these 57 bus routes aggregated at the census tract level 
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during the analysis window. The spatial distribution of public transit ridership is shown in Figure 

2-1b.  

 
Table 2-2 Samples of Capital Metro APC ridership dataset 

 

Attributes Sample 1 Sample 2 Sample 3 

Door open date time  8/17/2019 23:57:32 8/18/2019 0:05:31 8/18/2019 9:29:12 

Door close date time  8/18/2019 0:00:01 8/18/2019 0:05:43 8/18/2019 9:29:24 

Dwell time (sec) 149 12 12 

Number of max loads  7 3 4 

Number of alighting 0 1 1 

Number of boarding 3 0 0 

Vehicle latitude 30.3941 30.2679 30.2869 

Vehicle longitude -97.7484 -97.7428 -97.7335 

Route ID  3 1 7 

Vehicle ID  2373 2055 2625 

 

2.1.3 Supplemental datasets 

To further understand factors that lead to spatial variation in the relationship between shared 

micromobility modes and public transit, supplemental datasets are utilized. The goal is to understand 



17 

how different trip purposes might impact usage of different modes. Hence, the footage data of point 

of interests (POIs) dataset available from SafeGraph is utilized. This dataset contains the hourly visit 

volumes of more than 6 million POIs across the US and is collected through various methods mainly 

based on mobile phone devices (SafeGraph Inc., 2020). This different POIs could help describe both 

trip purpose and land use within a census tract. After removing the abnormal data points, empty rows, 

and outliers, the POIs located within the City of Austin are extracted and the visit volumes in the 

analysis window are aggregated within each census tract. To simplify the model and clearly conclude 

which type of traffic demands associate with higher competition among shared micromobility modes 

and public transit, all the 33,590 POIs within the City of Austin are grouped into 9 categories 

considering similar purposes as shown in Table 2-3. 

It is noteworthy that even though this study does not consider the transfer between different traffic 

modes, the category of transportation and motor vehicle POIs consists of the visit volumes of 

transportation hubs, terminals, airports, and car rental companies, which can be used to estimate the 

impact of other traffic modes. Summary statistics on each group of POIs are provided in Table 2-3. 

 
Table 2-3 POI footage dataset summary 

 

Groups Total Visits 
No. of 

OPIs 

Average 

Visits 
Max Visits 

Min 

Visits 
Visits Std. 

Health Care 9,563,082 6,827 7,001 727,249 0 33,171 

Manufacturing and 

Wholesale 630,527 357 469 145,354 0 4,230 

Miscellaneous and 

Grocery Stores 26,611,822 5,856 20,208 1,387,663 0 89,466 
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Schools 7,721,565 2,812 5,628 396,259 0 23,528 

Amusement and 

Recreation  41,036,456 3,191 30,965 2,114,891 0 106,300 

Transportation and 

Motor Vehicle 19,017,290 1,362 14,646 12,821,792 0 282,680 

Food and Drink 70,845,702 10,178 53,613 3,134,511 0 213,116 

House Maintenance 4,288,505 565 3,208 1,047,156 0 36,096 

Public Services 1,953,962 2,445 1,452 117,530 0 6,815 

 

Further, publicly available census data from the U.S. Census Bureau is utilized to represent the 

demographic characteristics of each census tract. For the purposes of this analysis three categories of 

information are collected: individual information (e.g., gender, education, birthplace, occupation), 

household information (e.g., household size, household type, number of workers per household, 

vehicle ownership) and transportation related information (e.g., time of departure from home for 

commute, commute mode of transportation, commute travel duration). There are a total of 69 

demographic variables available in this dataset. The demographic characteristics used in the models 

are provided in the RESULTS AND DISCUSSIONS section. 

 

2.2 METHODOLOGY 

The methods used in this study are briefly described in this section. First, a decomposition model to 

identify the difference in temporal travel patterns amongst public transit, shared bike and shared e-

scooters is discussed. Next, geographically weighted regression to explore the spatial relationship is 

presented.  
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2.2.1 Temporal variation analysis of each traffic mode 

A decomposition model is designed to identify the unique characteristic of each mode’s travel 

behavior pattern. The rational is that temporal variations in the data that is observed is the outcome 

of multiple travel behaviors overlapping together. As such, to understand the underlying travel 

behaviors, the aggregated observations are decomposed to multiple parts.  

The number of trips on a given day (Monday-Sunday) is firstly grouped into bins of 1-hour and 

averaged for the same day for all the available data. In other words, the final data represents the 

average number of trips observed by a given mode, on a given day (Monday-Sunday) for a given 1-

hr time period. Then, the total weekly trip volumes of each mode are normalized to be between 0 and 

1 to make them comparable with each other. The temporal variation is calculated as Equation 2-1.  

𝐶!(𝑡) =
"
#!
∑ 𝐶$,!(𝑡, 𝑡 + 1)&
$'"      2-1 

where	𝑡 is the time of day in units of hours; 𝑤 = 1, 2, 3, . . . 7 represents Monday to Sunday; 𝐶!(𝑡) is 

the temporal variation at time 𝑡, for day 𝑤; 𝐶( is the total trips volumes of the analysis year; 𝑁 is the 

number of weeks in the analysis year; 𝐶$,!(𝑡, 𝑡 + 1) is the trip volumes of day 𝑤 in 𝑖)* week from 

time 𝑡 to 𝑡 + 1.   

Next, to quantitatively compare the temporal variation of each traffic mode, the daily trip curve is 

decomposed into multiple curves (represented by distributions), each presenting a major unique trip 

behavior pattern in a day. The decomposed results offer insights into the underlying patterns. A 

decomposition model is implemented for each dataset (i.e., shared bike trips, e-scooter trips, and 

public transit trips) as in Equation 2-2: 

𝐶(𝑡) = 	∑ 𝛿$𝐹$(𝑡)&
$'"      2-2 

where 𝐶(𝑡) is the the number of trips by a given mode that occur at time, 𝑡 (in hours);	𝑁 is the number 

of components indexed by 𝑖 (for example, if we decompose the daily aggregated curve into morning 

peak, afternoon peak and off peak periods, we will have 𝑁 = 3); 𝐹$(𝑡) is the probability density 
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function of component 𝑖; and 𝛿$  is the coefficient, or a scaler, of component 𝑖. The components 

represent broad categories of types of trips that happen, e.g., morning commute, afternoon commute, 

and general day trips. Here, even though the data uses discrete time steps, 𝑡 is used as a continuous 

variable such that continuous functions of 𝐹$(𝑡) can be used. 

According to the characteristics of the trip distribution, 𝐹$ 	(𝑡) can take different forms, such as 

normal, lognormal, or Weibull distribution etc. Based on testing experiments, the normal distribution 

performed very well on the three traffic volume datasets and achieved comparable relative error 

compared with the asymmetric lognormal distribution. On the other hand, normal distribution has the 

simplest structure and can improve the model efficiency significantly compared to the other 

distributions. Therefore, 𝐹$ 	(𝑡)  is assumed to follow normal distribution for the morning peak, 

afternoon peak, and the general day trips as Equation 2-3 in this study 

𝐹$(𝑡) =
"

√,-."
𝑒
/#$%&"'

(

()"
(      2-3 

where 𝜇$ and 𝜎$ are the mean and standard deviation of component 𝑖, respectively, in units of hours. 

2.2.2 Spatial correlation analysis among different modes 

A common method to analyze the spatial correlation among different traffic modes is to use a 

regression model. For example, when analyzing the impact of shared bike and e-scooter trips on 

public transit ridership, public transit ridership could be selected as the dependent variable and the 

trip volumes of shared bike and e-scooter, along with other impact factors selected as explanatory 

variables. If a positive (negative) coefficient is estimated for the shared bike trip volumes this would 

imply that higher shared bike usage stimulates more (less) public transit ridership, indicating a 

complementary (competing) relationship between shared bike and public transit.  

A global regression model can capture the general relationship between the explanatory variables and 
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the response variable by assuming these relationships are spatially independent. However, for large 

cities like Austin, the topography, population density, and land use type vary across different parts 

of the city. Latent factors such as bus service accessibility, topography, and operation policy that vary 

in a spatial dimension can make these assumptions invalid. The interactions between traffic modes 

could be influenced by the local characteristics. Thus, a more flexible model is necessary to model 

these variations across different geographic regions. Instead of estimating a constant coefficient for 

each explanatory variable in a global regression model, the geographically weighted regression 

(GWR) assigns a set of coefficients of explanatory variables for each spatial unit (e.g., census tract 

in this study). GWR is well-known for its capability to model heterogeneity (e.g., non-stationarity) 

across different areas and is widely used for traffic demand prediction. The sub-model for each spatial 

unit can be expressed as in Equation 2-4. 

𝑦0 = ∑ 𝛽01𝑥01 +	𝜀0&
1'2      2-4 

where 𝑦0  is the dependent variable (e.g., number of e-scooter trips) in a census tract, 𝑗; 𝑁 is the 

number of explanatory variables used in the model; 𝑥01 is the 𝑘)* explanatory variable in census tract 

𝑗; 𝛽01 is the coefficient of the 𝑘)* explanatory variable in census tract 𝑗; and the 𝜀0 is the residual in 

census tract 𝑗.   

An ordinary least squares model (OLS) is also developed for comparison. Traditionally, the 

coefficients of an OLS are estimated using Equation 2-5. However, the coefficient estimation in 

GWR is also impacted by the weighted neighbors as shown in Equation 2-6.  

𝜷> = (𝑿(𝑿) − 𝑿(𝒚     2-5 

𝜷>𝒋 = B𝑿(𝑾0𝑿D − 𝑿(𝑾0𝒚    2-6 

where 𝑿 is the input matrix; 𝒚 is the output matrix; 𝑾0 is a matrix of weights specific to census tract 

𝑗 such that observations nearer to 𝑗 are given greater weight than observations further away. 

The weights of these neighbors, 𝑾0, follows a distance-decay function to emphasize the impacts of 
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near census tracts and to ignore the ones further than a certain distance. Hence, the number of 

neighbors that have influence, referred to as the bandwidth, also needs to be selected. A small 

bandwidth may result in an unstable fit in a small regional area, while a large bandwidth may 

introduce bias, and neglect the regional variation (Munira and Sener, 2020). The bandwidth can be 

defined based in two ways, either on a distance threshold or a specific number of neighbors. The 

corrected Akaike Information Criterion (AICc) is generally used as a criterion to evaluate the model 

performance and, therefore, can be used to select the optimum bandwidth to achieve the best model 

performance. The AICc is calculated as Equation 2-7. 

𝐴𝐼𝐶𝑐 = 	2𝑘 − 2𝑙𝑛	(𝐿) + ,1(4,1
5/1/"

		     2-7 

Where, 𝑘  is the number of estimated parameters in the model; 𝐿  is the maximum value of the 

likelihood function; 𝑛 is the sample size of the dataset. 

The model that achieves the lowest AICc is selected as the best model and the corresponding 

bandwidth is selected as the optimal bandwidth (Akaike, 1974). The mathematical solution of the 

GWR can be found in (Brunsdon et al., 1998). For this work, an open-source package named as 

pysal/mgwr in the Python platform is used to estimate the parameters (Oshan et al., 2018). The 

outcome of GWR consists of a set of coefficients for each census tract for each explanatory variable 

and the corresponding 𝑅, value which measures the goodness-of-fit. 

2.3 RESULTS AND DISCUSSIONS 

2.3.1 Individual characteristics of shared bike, e-scooter, and public transit 

First, some basic statistics are calculated to understand the general trends in data. The average 

distance, duration, and speed of an e-scooter trip is found to be 1.51 km, 10.65 mins, and 9.60 km/h, 

respectively. Compared to the e-scooter trips, shared bike trips have a longer average distance and 

duration of 2.62 km and 14.62 mins, respectively. The average speed of shared bikes is also higher 
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than e-scooters at 12.14 km/h. While the specific average speed of travel by public transportation in 

Austin is not provided, in the United States the average speed of travel by public transportation is 

22.69 km/h. Also, the average travel distance on Capital Metro was 5.5 km according to the APTA 

factbook (American Public Transportation Association, 2020). Hence, the general statistics suggest 

that micromobility is used on average for shorter trips than public transit.  

Details in the temporal variations of trips are explored by aggregating trips taken by each mode every 

hour considering the day of the week. Then, the average hourly trips in the analysis window for each 

day is determined to show the temporal distribution of each mode over a week. The temporal 

distributions of e-scooter, shared bike, public transit, and motorized vehicle trips across one week are 

shown in Figure 2-2. 

 

 

(a) E-Scooter 

 

(b) Shared Bike 

 

(c) Public Transit 
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Figure 2-2 Temporal distribution of different traffic modes across one week. Data are normalized 

based on total weekly trip volume and aggregated over analysis window 

 

From Figure 2-2, the daily trip volume on weekend days is higher than during weekdays for 

micromobility modes but lower for the public transit mode. The temporal distribution of different 

traffic modes indicate that they are preferred to be used for different travel purpose. To further explore 

the possible travel purpose of those three traffic modes, they are compared to the different type of 

POI footage temporal distribution shown in Table 2. The average temporal distribution of the 9 

groups on each day of a week in a bin of 1 hour is extracted and normalized to compare with the 

traffic modes usage pattern. The similarity between the POI visit pattern and traffic modes usage 

pattern is measured by the Euclidean distance between each pair, and the distance is shown in Figure 

2-3. 

 

Figure 2-3 Euclidean distance between POI visits temporal patterns and traffic modes usage patterns.  

 

From Figure 2-3, it can be seen that public transit has shorter distance from the school, public service, 
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and manufacturing and wholesalers POIs, which indicates that the public transit tends to be used as 

a commute tool to work. On the other hand, the temporal patterns of shared e-scooter and shared bike 

are similar to the footage associated with food and drinking, grocery stores and house maintenance, 

which is more like for leisure purpose.” 

Next, the decomposition model for all seven days of the week and all three traffic modes is 

implemented considering three normally distributed components (e.g., 21 different decompositions 

are estimated). The decomposition models are estimated based on a smaller bin, e.g., 15 mins, to 

ensure the accuracy of the fitting curves. Given the good fit of a three-component decomposition 

model more components are not explored. The three-components are assumed to mimic morning 

peak, afternoon peak and a general day travel. The results suggest that trends for weekdays are similar 

to each other, and trends for weekend days are also similar. Hence, to demonstrate the results of the 

decomposition model for each traffic mode, Tuesday and Saturday are chosen as a typical weekday 

and weekend day, respectively. To accommodate the trips generated after 23:59 each day, the daily 

trip distributions are plotted from 6:00 to 5:59 (+1 day) for the shared e-scooter and shared bike, and 

from 4:00 to 3:59 (+1 day) for public transit ridership. The fitting curves are shown in Figure 2-4. In 

this figure, the dotted lines represent the three different components, while the solid line represents 

their summation. The real data is shown as a gray area. In general, it can be seen that the morning 

peak appears as the left-most distribution, and the afternoon peak appears as the right-most 

distribution. In Figure 2-4e and Figure 2-4f the morning the morning peak is not visible because it is 

very small. Note that it is possible to have more than three components in Equation. 2. For example, 

Figure 4e show that there is another component of shared bikes around 2:00 on Saturday. However, 

since this late evening component (around 2:00) only happen in shared bike trips during weekend 

and not observed in other traffic modes on other days, for simplicity, it was not considered in this 

study. 
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(a) Scooter: Tues. (b) Bicycle: Tues. (c) Public transit: Tues. 

   

(e) Scooter: Sat. (f) Bicycle: Sat. (g) Public transit: Sat. 

Figure 2-4 Normalized trip volume vs. time-of-day decomposition models. (The dashed lines show the 

results of the fitting curve for each component, and the solid curves are the fitting curve for the entire 

day. The shaded areas represent the real data.) 

 

Using the decomposition results, the percentages of trips that account for the morning peak, afternoon 

peak and general day trips are calculated and shown in Figure 2-5. The results suggest that public 

transit exhibit a strong morning peak during the weekdays, which is not the case for weekends. 58% 

of the public transit trips can be attributed to the morning peak and afternoon peak components. The 

ratio of the morning peak to afternoon peak is also the highest, about 0.65, which indicates a temporal 

symmetric distribution associating with commuting trips (Bordagaray et al., 2016).  
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a). E-scooter b). Bicycle 

 

c). Public Transit 

Figure 2-5 Percentage of each component for different traffic modes 

 

From the e-scooter trips decomposition results in Figure 2-5, it can be found that 61% of all e-scooter 

trips can be attributed to the afternoon peak component, and this percentage increases to 

approximately 70% when considering only Friday and Saturdays. Additionally, the percentage of 

trips attributed to the morning peak for e-scooters is very low compared to other traffic modes, and 

the ratio of the morning peak to afternoon peak (0.09) shows that e-scooter usage is asymmetric 

during a day. These results indicate that e-scooters are more likely to be used as a leisure travel mode 

during the evening, especially on weekends, rather than a commute tool. Shared bike trips also tend 

to be attributed to the afternoon peak component, however the ratio of morning to afternoon peak 

trips is slightly higher at 0.19. Also, recalling that the shared bike mode has a longer trip duration and 
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travel distance, it can be concluded that the shared bike mode is more frequently used for commuting 

than e-scooters. Further, combining with Figure 2-2 it can be observed that for both e-scooter and 

shared bike trips, there is a slightly higher tail followed by a shoulder in the evening (around 11 pm) 

on Fridays and Saturdays. This indicates that micromobility is likely chosen as a leisure travel mode 

for weekend late evenings. These conclusions are consistent with findings in the literature 

(McKenzie, 2019) and further provide a quantitative comparison between three traffic modes which 

indicate that they have specific usage and travel patterns. 

To summarize, the data indicates that public transit is mainly used for commuting while 

micromobility modes are mostly used for leisure activities in the evening and on weekends. 

Specifically, the shared bike is more likely to be used for commuting compared to e-scooter. This 

quantitative analysis of each traffic mode can help to distribute different traffic modes and build a 

harmonious traffic network for the different demands.  

2.3.2 Spatial correlation among shared bike, e-scooter, and public transit 

2.3.2.1 Feature selection 

All data are aggregated at the census tract level within the entire analysis year to perform the spatial 

regression. After combining all available demographic characteristics with the nine POI categories, 

a total of 78 potential variables that might influence micromobility ridership exist in the spatial 

domain. Including all of the potential variables into the model is not reasonable since the true impact 

of individual variables cannot be shown. The commonly used feature selection method in statistical 

models is to manually select variables based on their significance level, e.g., p-value. However, when 

the size of potential variables is large, this could be inefficient since it requires re-estimating the 

model many times, and the interaction among different variables could be missed in this process. 

Therefore, a Boruta feature selection, which is commonly used in machine learning methods, is 

adopted to pre-select the relevant variables. The Boruta method has two advantages: 1) the 
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effectiveness of each variable is determined considering how they improve the model compared to a 

randomized shadow of themselves, hence variables do not compete with each other, and 2) repetition 

– the results become robust through iterations. The importance of each variable is determined by 

considering the average results of all iterations (Mazzanti, 2020). The selection is based on the 

demographic characteristics, and general POIs information for a given census tract and the relevant 

micromobility or public transit ridership. Based on the importance level of variables from the Boruta 

feature selection, 13 variables are that can impact e-scooter ridership, 12 variables that can impact 

shared bike ridership, and 9 variables that can impact public transit ridership are selected as shown 

in Table 2-4. 

 

Table 2-4 Selected features for e-scooter, bike or transit usage prediction 

 

Variable name Description 

Selected for model 

E-

scooter 
Bike Transit 

Travel time - 5 to 9 mins # of people whose commute time is 5 to 9 mins ü ü ü 

No vehicle # of households that do not own a car ü ü ü 

POIs - amusement and 

recreation 
# of visits to amusement and recreation POIs ü ü ü 

POIs - food and drinking # of visits to food and drinking POIs ü ü ü 

POIs - miscellaneous and 

grocery stores 

# of visits to miscellaneous and grocery stores 

POIs 
ü ü ü 

Public transit Public transit ridership ü ü û 

Transportation - 

motorbike, bike or other 

# of people who commute by motorcycle, 

bicycle or other. 
ü ü û 
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Household type - 

nonfamily 
# of nonfamily type households ü ü û 

Household - 1 # of single-person households ü ü û 

Vehicle - 1 # of households with one vehicle ü ü û 

Leaving home - 830 859 
# of people departing home between 8:30 and 

8:59 am 
ü ü û 

POIs - transportation and 

motor vehicle 

# of visits to transportation and motor vehicle 

POIs 
ü ü û 

Transportation - walked # of people who walk to work ü û û 

Scooter trips #of shared e-scooter trips û û ü 

Bicycle trips # of shared bike trips û û ü 

POIs – public services # of visits to public service POIs û û ü 

Transportation – public 

transit or taxicab 

# of people who commute by public transit or 

taxicab 
û û ü 

 

The feature selection results suggest that a few of the variables impact the usage of all three modes 

considered, including a short travel time to work, no vehicle ownership, and POIs related to 

amusement and recreation, food and drinking, and miscellaneous and grocery stores. Most of these 

POIs are associated with leisure travel, which is consistent with the literature.  

As expected, it is found that public transit ridership is also an important feature in determining the 

shared e-scooter or shared bike usage. Other variables that impact both shared e-scooter and shared 

bike usage, but that don’t impact public transit ridership are number of people who commute by 

taxicab, motorcycle or bicycle, nonfamily type or single-person households, households with a single 

vehicle, departure time from home and number of visits to transportation and motor vehicle POIs. 

Most of these variables make sense as they can describe a need for additional modes of transportation. 

Overall, the factors that impact e-scooter or bike ridership are very similar but only differ in one 
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variable, which is whether people walk to work in a given census tract or not. This is reasonable since 

the average travel distance by shared bikes is longer than by e-scooters and in general shared bikes 

are not expected to replace walking trips like e-scooters do. 

There are four features that are unique to transit usage, which are scooter and bicycle trips, public 

service POIs and number of people who commute by public transportation. In general, the features 

relevant for transit are consistent with the literature (38, 39).  

2.3.2.2 Geographically weighted regression results 

To explore the spatial correlations among shared bikes, e-scooters, and public transit, three GWR 

models are developed by selecting the shared bike trip volumes, e-scooter trip volumes and public 

transit ridership as response variable, respectively. The results suggest that the shared bike model and 

the shared e-scooter model are dominated by each other, and the other variables become insignificant 

due to the high correlation between shared bike and shared e-scooter usage. Hence, here only the 

results of the Transit-GWR model, which considers public transit ridership as the dependent variable 

and the other two as independent variables, is considered. This transit model, which takes shared bike 

and e-scooter trip volumes along with other impact factors as explanatory variables, demonstrates a 

relationship between public transit usage and the other two micromobility modes. These relationships 

help to depict a clear spatial correlation pattern among these three public traffic modes. The detailed 

specification and the results of the model are introduced here. 

The optimal bandwidth for the Transit-GWR model is determined as 42 using the AICc criterion. For 

comparison, a global linear regression model, is also estimated using ordinary least squares (OLS) 

method. In terms of fit, a higher log-likelihood ratio was achieved for the Transit-GWR model 

(-2213.78) as compared to the OLS model (-2303.61) implying better fit. The Transit-GWR also 

achieves smaller AICc values, (4556.97, compared to 4627.22 for OLS) and higher average 𝑅, (0.93, 

compared to 0.78 for OLS), which suggests that the Transit-GWR model outperforms the OLS model 
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significantly and achieves higher prediction accuracy. The 𝑅,	for each census tract in the GWR 

model is shown in Figure 2-6. From Figure 2-6, it can be seen that the GWR model achieved high 

reliability in the center and north areas of the City of Austin and most of the census tracts have 

𝑅,	larger than 0.8.  

 

 

 
Figure 2-6 𝑹𝟐	distribution of Transit-GWR model 

 

The coefficient estimations of the OLS results and statistical summary of the Transit-GWR results 

are shown in Table 2-5. The OLS estimation results show that shared bike is positively correlated 

with public transit with 95% confidence, but e-scooter trips are found to be insignificant to public 

transit ridership in the global model. Different from the global model, the Transit-GWR model 

provides more detailed insight. For the relationship between shared bike usage and public transit 

ridership, instead of a general positive correlation across the whole city, the Transit-GWR model 

suggests that the shared bike usage is significantly correlated with public transit ridership in 87 census 

tracts, in which 53 of these have a positive correlation while the remainder indicate a negative 
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correlation. This suggests that the relationship between shared bike usage and public transit ridership 

is not homogenous as the global model indicates. Similar results are observed for the relationship 

between e-scooter usage and public transit ridership as well; the Transit-GWR model suggests that 

e-scooter usage is significantly correlated with public transit in 86 census tracts, and 57 of them are 

positively correlated with each other. Those spatial variations of correlation between micromobility 

modes and public transit capture the impacts of regional factors, some of which are present in the 

model. Most of the POI groups are not evenly distributed across the city, such as public service and 

amusement and recreation, and the preferred transportation mode as well as the expected travel time 

to the workplace are significantly different across census tracts. These differences are captured in the 

GWR model by assigning different coefficients to different census tracts as shown in Table 2-5. 

Besides those differences, the global model and GWR model also get some consistent results with 

respect to several impact factors. For example, the OLS results suggest that the visit volumes of food 

and drinking POI should be significantly and positively correlated with public transit, which is 

confirmed by the GWR results for 79 census tracts. 

 
Table 2-5 Spatial regression results of Transit-GWR model 

 

Variables 
OLS Results GWR Results 

Coef. P>|z| Mean # Signif 
Coef 

# (+) 
Coef. 

# (-) 
Coef. 

Constant -36000 0.70 39600 22 20 2 

Scooter trips -1.0 0.44 40.8 86 57 29 

Travel time - 5 to 9 mins -288.4 0.41 -42.9 31 10 21 

Bicycle trips 69.1 0.01 8701.5 87 53 34 

POIs - public services 2.3 0.33 -0.7 37 6 31 
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POIs - miscellaneous and grocery stores 0.4 0.67 1.9 28 28 0 

POIs - amusement and recreation 1.1 0.31 0.3 55 39 16 

POIs - food and drinking 3.2 0 3.1 79 79 0 

Vehicle - no 314.9 0.51 192.9 55 33 22 

Transportation – public transit or taxicab 836.9 0.10 121.2 41 22 19 

 

Figure 2-7 shows the spatial distribution of the significant coefficients of the GWR model.  The most 

pronounced conclusion is that the correlation between public transit and shared micromobility modes 

are different from east to west of the city, where the shared bike and e-scooter have approximately 

reversed correlations with public transit. For most census tracts where the e-scooter ridership is 

positively correlated with public transit ridership, shared bike usage is negatively correlated. This 

appears to imply that only one of these micromobility forms, either shared bike or e-scooter, will tend 

to serve as a complementary mode to public transit based on specifical local characteristics. E-scooter 

appears to be more likely to be positively correlated with public transit in the west of the City of 

Austin and negatively correlated in the east areas. It was noteworthy that the shared bike system in 

the City of Austin was dominated by the human-powered bikes during the analysis window in this 

study, and only a small portion of those bikes are upgraded to electricity-powered after 2020. 

Therefore, a possible explanation of this spatial pattern is that the west of the City of Austin is more 

mountainous and hence e-scooters are more attractive in this region due to the electric power. Other 

characteristics of the city also vary between the east and west sides and may contribute to this pattern, 

though. The demographic variables of 5 to 9 mins of commuting time, and households without 

vehicle ownership show negative correlation with public transit in the city center and positive 

correlation in the north and south areas. This is consistent with expectation that in the center of the 

city, more alternative modes present, such as shared micromobility which are more convenient and 

efficient than public transit in a congesting traffic network. Hence, travelers might be more like to 
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use the shared e-scooter or shared bike in the city center instead of public transit.  

 

  

 

 

 
Figure 2-7 Local coefficients of variables in the Transit-GWR model 

 

2.3.3 Discussion 
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This study analyzes the usage patterns of shared bike, e-scooter, and public transit, in a market that 

they co-exist, from both individual and interacting perspectives. The unique datasets and spatial 

regression model used in this study allows us to offer insights to the existing literature about the 

shared micromobility usage in urban areas. 

First, the individual characteristics of shared bikes, e-scooter and public transit usage are highlighted 

through a temporal pattern analysis. The decomposed components of a whole day’s trips distribution 

suggest that public transit usage patterns mimic commuting patterns, while shared micromobility 

modes exhibit trip distributions that are not typical for commuting. Public transit is more likely to be 

used during weekdays and has a symmetric distribution on morning and afternoon peaks, while the 

micromobility modes are more preferred during the weekend, especially in the afternoon and late 

evening. When comparing the temporal usage pattern of shared bikes to e-scooters, shared bikes 

demonstrate usage patterns more similar to commuting patterns than the e-scooter, evidenced by the 

more pronounced morning and afternoon peaks.  

The spatial interactions among shared bike, e-scooter and public transit are then explored by 

developing a set of GWR models for public transit ridership considering the e-scooter, shared bike, 

POIs visits and demographic information. Instead of incorporating static public transit variables such 

as stop density or route density used in the literature, this chapter used the trips volume of the public 

transit within each census tract to reflect the dynamic demand of public transit. The POI trip 

information is also included into the model with the actual visit volumes instead of POI density or 

other static land used indicator. Those unique datasets improved the reliability of the model results.  

This study filled existing research gaps by providing a detailed comparison of temporal and spatial 

characteristics among shared bike, e-scooter, and public transit. Different from the existing literature 

that analyzed their travel patterns and impacts of e-scooters and shared bikes separately (McKenzie, 

2019; Reck et al., 2021; Younes et al., 2020), this study analyzed the interactions among the two 
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types of micromobility modes and public transit within the same area. Some literature concluded that 

the correlation between shared bike and public transit may be different between short distance trips 

and long distance trips (Guidon et al., 2019; Kong et al., 2020; Levy et al., 2019), this study shows 

that this division exists between shared bike and e-scooter as well, where e-scooters complement 

public transit in the west of the City of Austin and shared bikes promote public transit usage in the 

east areas. This division might be caused by the demographic information, geographical 

characteristics, or the electrical assistance of e-scooters. These conclusions extended the 

understanding of micromobility especially with respect to differing interactions with public transit. 

2.3.3.1 Practical significance 

The conclusions from this research can provide a solid reference to multi-mode transportation 

practitioners when developing and operating shared micromobility systems. It suggested that the 

development of one type of shared micromobility service requires to fully considering the existing 

traffic network to achieve the maximum benefit. The land usage, demographic information as well 

as the geographical information could significantly influence users’ preference. Both as a type of 

micromobility services, shared e-scooter and shared bike share some similarity. However, they are 

still slightly differentiated in respect of user group, travel time and trip purpose due to the power 

system, convenience, flexibility and ability to ride a long distance. Based on the case of the City of 

Austin, it’s recommended that the shared e-scooter should be distributed around recreation center, 

famous sites and grocery stores, while shared bike will be more benefit to distributed around the 

public transit stops, transportation hubs, and commercial business district to provide a connection 

between different modes and service for the last mile commuting. In the mountainous area, it’s 

preferred to adopt some electric powered modes, such as e-scooters and e-bikes. 

The decomposition model and geographically weighted regression developed in this study is based 

on the specific datasets of Austin, however, the methodology can be implemented to any other city 
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that are planning to adopt new shared micromobility programs or optimize the existing distribution 

of those micromobility facilities.  

 

2.4 SUMMARY 

This chapter analyzed spatiotemporal travel patterns of two types of micromobility modes and their 

interaction with public transit considering the impact of POIs visit volumes, and demographic 

information. Specifically, the research gap of the different roles of e-scooters and shared bikes when 

coexisting with public transit is addressed. To do so, shared dockless e-scooter and shared dockless 

bike data in the City of Austin, Texas, are used. Since both modes co-exist along with public transit 

in this city, users can select different traffic modes freely and thus are able to reflect the choices of 

two types of micromobility modes in a background of public transit. The results of the individual 

characteristics analysis indicated that e-scooters are more likely to be used for leisure trips than public 

transit and shared bikes based on the temporal distribution of usage and the ratio of the morning peak 

to the afternoon peak trips. Similarly, shared bikes are also used for leisure trip but appears to have 

more usage during the peak hours, too, compared to e-scooters. The Transit-GWR model showed 

that, while e-scooter and shared bike usage is highly positive correlated with each other, e-scooters 

tend to complement public transit, particularly in the west areas with more mountainous terrain, by 

providing a connector, collector, and distributor for public transit trips. However, shared bikes are 

more likely to complement public transit and promote it in the east of the city, where the population 

is less affluent and public transit density is larger. These differences suggest that shared bike and 

shared e-scooter have different roles in relation to public transit considering the built environment 

and the demographics.  

This chapter suggests that implementing a single mode strategically could help improve access to 

public transit, but when two of the micromobility modes co-existing, residents could have a 
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preference for one over the other based on the specific regional environment. In general, only one of 

these modes will complement public transportation system in a given area. Since shared bikes and e-

scooters attract users with different travel purposes, the implementation of these modes to 

complement public transportation can be chosen based on land use, demographic, and terrain 

characteristics in different areas. This work can inform local policies that regulate micromobility with 

goals of reducing congestion and increasing environmental sustainability. 

A limitation of this work is the actual trip purpose of the different traffic modes users was unknow. 

A trip purposes survey in the future could help to examine the relationship between micromobility 

usage and geographical information to derive more detailed reasons for the different correlation 

distributions. 
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3 SHARED BIKE AND TRAFFIC SAFETY 

Macroscopic traffic safety models that predict crash frequency over regions of a transportation 

network are becoming increasingly common. However, perhaps due to data availability, these models 

tend to use only exposure attributes related to vehicular traffic and rarely include exposure attributes 

related to non-motorized travel. Those that do consider non-motorized travel only include at most 

one explanatory variable. This chapter seeks to extend these existing studies by incorporating several 

exposure metrics that capture non-motorized and public transportation use at the census-tract level. 

A macro-level crash prediction model for the Manhattan area of New York City is developed that 

considers roadway and demographic variables, as well as bike share trip information, subway flows, 

taxi movements, and person-trips to various points of interest (POI) as measures of travel exposure. 

The models are developed using negative binomial regression and various functional forms are 

considered. The spatial variations between crash frequency and the selected exposure metrics are 

further explored by developing a set of geographically weighted negative binomial regression 

(GWBNR) models for three different types of crash frequency.  

3.1 Data Description 

Several unique datasets were obtained and combined for use in this study. Data on individual crashes 

in New York City were obtained from the New York City Open Data Portal to be used as the 

dependent variable in the model (Police Department (NYPD), 2022). Shared bike trip data were 

obtained from the Citi Bike system to evaluate the impact of mass shared bike trips on the traffic 

safety (Citi Bike, 2022). In addition, Point of Interests (POIs) visits data was obtained from 

SafeGraph to be used as a surrogate for general trip demand. These data were further supplemented 

with taxi trip records and subway stations’ entrance and exit volumes from the NYC Open Data Portal 

which served as a general surrogate for traffic volumes. Finally, the data were combined with 

demographic and geographic information since these features have known relationships to 
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macroscopic safety performance in the literature.  

The analysis period used for this study was a period with a time overlap with all the datasets described 

above. It was further shortened to not include data during the period of the COVID-19 pandemic, as 

both shared bike usage and POIs visits changed dramatically during this period. As a result, the 

analysis period considered here was from January 1, 2018, to January 1, 2020, for a total of two years 

of data. The shared bike system is mainly distributed within the borough of Manhattan, therefore, to 

make the datasets compatible, all the data are collected from the Manhattan area in New York City 

and aggregated at the census tract level, which consists of 278 census tracts in total. In order to 

develop the geographically weighted model in a spatial dimension, the two-year data are summed 

within each census tract, which makes up 278 observations in total. The description of each dataset 

and the data cleaning and processing are discussed below. 

3.1.1 Crash dataset 

The crash dataset contains details of all police-reported crashes in NYC from January 2013 to 

September 2020. The police report (form MV104-AN) is a requirement for fatal or injury crashes, 

along with crashes with more than $1,000 worth of property damage. A total of 1.71 million events 

are recorded in this dataset and each record contains the specific crash time and geolocation of it. The 

number of persons, pedestrians, cyclists, and motorists that were injured and killed is recorded as 

well, which are extracted and used in the present study. 

To develop a robust and reliable aggregated crash prediction model, this study used all fatal and 

injury crashes that occurred within Manhattan. The fatal and injury crashes were further categorized 

based on mode of the travelers that experienced the fatality or injury. Three types of categories were 

considered based on the type of mode involved in the crash: 1) cyclist; 2) pedestrian; and 3) motorist. 

The statistics summary of the crash data is shown in Table 3-1. 
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3.1.2 Shared bike trip records 

Citi Bike is the dominant shared bike service provider in New York City. A publicly accessible 

dataset provided by Citi Bike was used, which contains the trip duration, start and end time, date, and 

station names of each trip. In this study, each trip is aggregated at the census tract level based on the 

geolocation of its start station; however, similar results are obtained when aggregating based on the 

end station. To be compatible with other datasets, the data starting from January 1st, 2018, to January 

1st, 2020, are extracted in this study. The statistical summary of the shared bike dataset is shown in 

Table 3-1. 

3.1.3 POIs visit volumes 

The POI footage pattern dataset was obtained from SafeGraph, which contains the hourly visit 

volumes of more than 6 million points of interest across the US (SafeGraph, 2020). The data is 

collected via various methods, the most common of which is from mobile phone devices. The 

geographic location of each POI is provided, along with the city and region name. Each POI is also 

categorized based on the type of location. For this study, all the POIs within the Manhattan area in 

New York City during the time frame of the study were extracted. There are about 150 categories for 

a total of 26,780 POIs within Manhattan. To simplify this dataset, these 150 categories are further 

grouped into 9 categories based on their similarity as shown in Table 3-1.  

3.1.4 Traffic surrogate datasets 

Ideally, actual traffic volumes on roadways within each census tract would be used to predict the 

crash frequency. Unfortunately, such a dataset was not available for all roadways in the Manhattan 

area. Instead, two traffic surrogate datasets were used in this study: taxi trips and the number of 

people entering and exiting subway stations. These data were used to reflect the influence of traffic 

networks on crash frequency.  
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The taxi trips dataset includes the trip records of yellow taxis, green taxis, and For-Hire vehicles 

(such as Uber, Lyft, Via, and Juno)  (NYC Taxi and Limousine Commission, 2022). Each record 

consists of the pickup and drop-off date, time, location, trip distance, fare, and driver-reported 

passenger counts. Since the pickup and drop-off location of each taxi trip comes with the Taxi Zone, 

which is larger than the census tract, the trip volumes for the taxi zones are assigned to the census 

tract proportional to the area of the census tracts.  

The subway data consists of entrance and exit counts to each subway station aggregated every four 

hours. However, the subway stations are only available in a small fraction of the census tracts, hence 

most of the census tracts have 0 value. Thus, the subway data is transformed to a dummy variable in 

this study to indicate a census tract with or without subway stations. The summary of the traffic 

surrogate datasets is shown in Table 3-1.  

3.1.5 Demographic information 

The demographic data of each census tract is collected from the open census data available through 

SafeGraph, which includes data from the American Community Survey 5-year estimates. The data 

is comprised of three parts: individual information (such as age, gender), household information (such 

as family income, age of household), and transportation-related information (such as travel time from 

home to work, traffic mode to work). The information is typically provided in a categorical format; 

for example, age is divided into 3 groups, young (under 17 years), middle (18-49), and old (50 years 

and older). Hence the data summarizes the number of people belonging to each group for each census 

tract, or the number of households that belong to different categories. The statistical summary of the 

demographic characteristics used in this study is shown in Table 3-1. To focus on the different 

impacts of demographic characteristics, the percentages of people in each demographic group instead 

of the absolute values of the population are used in this study, and the total population within a census 

tract is also used as an independent variable in the models.  
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3.1.6 Geographic route profile 

The roadway density is also collected as a part of this dataset as it could also be a surrogate for traffic 

related variables and significantly impact crash frequency. The total route length is calculated from 

the centerline profile which is a single line representation of New York City streets containing address 

ranges and other information such as traffic directions, road types, segment types (Police Department 

(NYPD), 2022). The road type include street, highway, bridge, tunnel, boardwalk, path/trail, step 

street and so on. All type of road is considered in this study. The roadways are distributed to census 

tracts by combining the route centerline profiles with the shapefile of census tracts. The roadway 

density is determined by summing the route lengths within a census tract and dividing by the area of 

the corresponding census tract, see Equation 3-1. 

𝑟𝑜𝑎𝑑𝑤𝑎𝑦	𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = ∑ 789):	<:5=)**++	-./$0
>?:@	8A	B:5C9C	)?@B)      3-1 

Besides the roadway density, the total route length, the number of intersections within each census 

tract are also extracted as independent variables to be considered. 

 
Table 3-1 Statistical summary of the census tract level data used in the study 

Dataset Variable (Unit) Average Max. Min. Std. 

Crash 

dataset 

Number of pedestrian-involved crashes 

(crashes)  
16 57 0 12 

Number of cyclist-involved crashes 

(crashes) 
10 52 0 8 

Number of motorist-involved crashes 

(crashes) 
31 195 0 25 

Total number of fatal and injury crashes 

(crashes) 
57 209 0 36 
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Shared 

bike 
Number of shared bike trips (trip) 99452 1103973 0 131370 

POI Data 

Health Care (person trips) 12043 727249 0 75712 

Manufacturing and Wholesalers (person 

trips) 
2221 145354 0 19695 

Miscellaneous and Grocery Stores (person 

trips) 
31329 1387663 0 210962 

Schools (person trips) 10806 396259 0 61963 

Amusement and Recreation (person trips) 36943 2114891 0 208690 

Transportation and Motor Vehicle (person 

trips) 
13133 12821792 0 193160 

Food and Drinking (person trips) 88505 3134511 0 521280 

House Maintenance  3208 1047156 0 36096 

Public Services (person trips) 5563 117530 0 39892 

Traffic 

surrogates 

Taxi trips (trips) 2709805 14445574 134453 2277586 

Subway Dummy 0.35 1.00 0.00 0.48 

  

Population 11515 32079 1 6221 

Percentage of people <= 17 years old 0.14 0.32 0.00 0.07 
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Percentage of people > 50 years old 0.32 0.79 0.00 0.11 

Percentage of males (person) 0.47 0.88 0.00 0.08 

Percentage of households with family 

income less than $ 19,999 per year 

(household) 

0.20 0.63 0.00 0.13 

Geographic 

route 

profile 

Total route length (miles) 8.20 74.18 1.25 7.21 

Roadway density (mi/mi^2) 104.62 490.96 31.74 43.65 

Number of intersections (count) 174 974 16 100 

 

3.2 Methodology 

Crash count data take the form of non-negative integers and are commonly modeled by linear 

regression, Poisson regression, and negative binomial regression (Abdulhafedh, 2016; Ye et al., 

2018). Compared to linear regression, Poisson and negative binomial regression models perform 

better by directly addressing the counts nature of crashes (i.e., crash frequencies take non-negative 

integer values) and are thus more frequently used in the crash frequency modeling (Ye et al., 2018). 

However, the Poisson model assumes that the mean of the count data equals its variance. This 

assumption limits its performance on the crash frequency modeling since crash data is typically 

subject to overdispersion, i.e., the variance of the data is larger than the mean. The negative binomial 

distribution, on the other hand, relaxes this constraint and allows for overdispersion, and therefore 

achieves more flexibility and better performance (Hilbe, 2011). Hence, the negative binomial (NB) 

regression is adopted in this study to model the different types of crash frequencies, i.e., pedestrian 

crashes, bicyclist crashes, and motorist crashes, considering various covariates. The Hoerl functional 
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form is also adopted to improve the performance of the models.  

The global NB model assumes the relationship between response variables and explanatory variables 

is constant across the research areas. However, when the research area is big or the land use 

characteristics are significantly different from place to place, this assumption might be questionable 

and therefore limit the performance of the global model. Therefore, a geographically weighted 

regional model, e.g., the GWNBR model, is developed to capture the spatial variations. 

The basic theory of negative binomial regression and Hoerl functional form, and the GWNBR model 

are briefly described below. 

3.2.1 Negative binomial model 

Assuming that 𝑌 is the response variable, which is the crash count data in this study, 𝒙 is a vector of 

covariates, and 𝜇(𝒙) is a non-negative function of 𝒙, the probability mass function for a negative 

binomial distribution can be expressed as: 

𝑃𝑟 (𝑌 = 𝑦	|𝒙) = DEF4G%1H
F!D(@%1)

U GL(𝒙)
"4GL(𝒙)

	V
F
U "
"4GL(𝒙)

V
@%1

	   3-2 

The basic model structure for the NB model is an exponential function, which can be expressed as in 

Equation 3-3. 

𝜇(𝒙) =𝑒𝑥𝑝 (𝜷𝒙) 	= 𝑒𝑥𝑝	(𝛽2 + 𝛽"𝑥" + 𝛽,𝑥, +⋯+ 𝛽5𝑥5)   3-3 

where, 𝑥", 𝑥,, … , 𝑥5  are the elements of covariates vector 𝒙 , 	𝛽2, 𝛽", … , 𝛽5  are the elements of 

coefficient vector 𝜷, 𝑛 is the number of covariates. 

As a result, the mean and variance of NB distribution can be expressed as follows: 

𝐸(𝒙) = 𝜇(𝒙)      3-4 

𝑉𝑎𝑟(𝒙) = 𝜇(𝒙) + 𝛼𝜇(𝒙),    3-5 

From Equation 3-5, it can be found that the relationship between the mean and variance of the NB 
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model depends on the dispersion parameter, 𝛼.  

In the standard NB model, exposure variables are typically entered in a log form (i.e., log(𝑥")), while 

the remaining explanatory variables are incorporated into the model by an exponential function as 

shown in Equation 3-3. However, Hauer (2015) argued that the increase of one covariate may not 

always lead to an exponential increase of response variables (Hauer, 2015). Therefore, a more flexible 

function, such as the sigmoid function or Hoerl function should be used. The Hoerl function can take 

convex or concave shape relationships with inflection points and therefore is considered in this study 

(Wang et al., 2020). For a given exposure variable 𝑥", the Hoerl function can be written as: 

𝜇(𝑥) = 𝑒𝑥𝑝	(𝛽2 + 𝛽"𝑥" + 𝛽54" log(𝑥") +𝛽,𝑥, +⋯+ 𝛽5𝑥5)	     3-6 

Equation 3-6 suggests that the Hoerl function can be implemented by adding the log form of 

covariates into the dataset as additional variables.  

3.2.2 Geographically weighted negative binomial model 

Instead of estimating one set of parameters, 𝜷, for all the spatial units, e.g., census tracts in this study, 

the GWNBR model assigns a set of parameters 𝜷𝒊 for each census tract 𝑖 specifically. The basic 

structure of the GWNBR model can be expressed as in 3-7. 

𝜇$(𝒙𝒊) =𝑒𝑥𝑝 (𝜷𝒊𝒙𝒊)      3-7 

This regional model 𝜇$(𝒙𝒊) is estimated considering that each census tract has a fixed number of 

neighbors around it. The number of neighbors is determined by the bandwidth, 𝑏, which can be 

defined based on a threshold distance or based on a number of neighbors. In this study, the bandwidth 

is defined as a specific distance from the centroid of each census tract, and all centroids of census 

tracts within this distance are selected as neighbors to this census tract. Based on this bandwidth, the 

geographical weights of neighbors around census tract 𝑖 is defined as the adaptive bi-squared kernel 

as Equation 3-8. 
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𝑖𝑓	𝑗	𝑖𝑠	𝑡ℎ𝑒	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠	𝑜𝑓	𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    3-8 

where, 𝑑$0 is the distance between the centroids of census tracts 𝑖 and 𝑗. 

The optimal bandwidth is determined before estimating the GWBNR model by considering the 𝑏 that 

provides the minimum corrected AIC criterion (AICc). The AICc is calculated as Equation 3-9. 

𝐴𝐼𝐶# = −2𝐿(𝜷) + 2𝑘 + ,1(14")
Q/1/"

     3-9 

where, 𝐿(𝜷) is the likelihood function of the GWNBR model, k is the number of the effective number 

of parameters in the model, and 𝑚 is the number of observations.  

The model is estimated using the SAS/IML Macro code provided by da Silva and Rodrigues (da Silva 

and Rodrigues, 2014). 

3.3 Results and discussions 

This section provides the results of the models developed to describe cyclist, pedestrian, and motorist 

crash frequency. Each model uses as a dependent variable the number of people from this mode 

injured or killed within a given census tract. Three different types of global models and one GWNBR 

model are considered for each crash category considered. Model 1 is the basic NB model that 

considers all relevant explanatory variables in the traditional NB form shown in Equation 3-3. It is 

specified as a starting point for model optimization and considers explanatory variables selected 

based on the significance level and the performance of the model. Note that POI information 

considered in this first model represents all POI person-visits within each census tract. Model 2 

extends the first model by using the Hoerl functional form for exposure variables to improve the 

model fit to the observed data, as discussed in the methodology section. Model 3 uses the second 

model and extends it to consider only a subset of POI categories that can be used to improve model 

fit. Incorporating all POI categories into the dataset might lead to arbitrary results since some of the 
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categories may not directly impact crash risk, such as person-trips to manufacturing factories and 

household maintenance companies. Therefore, to further improve the model, only POI categories that 

represent daily needs are considered in Model 3. These categories include Health Care, Miscellaneous 

and Grocery Stores, Schools, Transportation, and Motor Vehicle, Food and Drinking, Public 

Services, and are combined to form the Essential POI visits. A GWNBR model is then developed 

based on the selected variable in Model 3 and the results are compared to the global model. The 

spatial influence of the explanatory variables on crash frequency is also analyzed based on the 

parameter estimations in GWNBR model. 

3.3.1 Cyclists model 

Coefficients for all models estimated to predict fatal and injury counts of cyclists in Manhattan, along 

with various metrics to assess model performance (i.e., log-likelihood; corrected Akaike information 

criterion, AICc; R2; root-mean square error in the unit of number of fatal or injured during 2-years 

analysis window within each census tract, RMSE; and mean absolute error in the unit of number of 

fatal or injured during 2-years analysis window within each census tract, MAE), are shown in Table 

3-2. 

3.3.1.1 Model 1 – Best traditional NB model 

The results of Model 1 suggest that the cyclist crash frequency is expected to increase with total 

number of person visits to POIs within a census tract, the number of shared bike trips within the 

census tract, the number of intersections within the census tract and the percentage of low-income 

families. Cyclist crash frequency is expected to decrease with the density of roadways within the 

census tract, and fraction of both older and younger population.  

3.3.1.2 Model 2 – Hoerl function NB model 

Different types of Hoerl functions are tested and found that transforming the Shared bike trips and 
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Number of intersections variables into logarithm form and adding the logarithm form of Total POI 

visits can improve the model fit. To account for 0 values in the logarithm transformation of the Shared 

bike trips, a value of 1 is added to each of these variables, which is very small compared to their 

general magnitude.  

Comparing model fit between models 1 and 2 reveals that the Hoerl function improved the model 

performance. In addition, the significance level of some model coefficients increased compared to 

model 1. To better illustrate the benefit of using the Hoerl function, Figure 3-1 shows the relationship 

between POI visits and the prediction of crash frequencies for model 1 and 2 for a sample census 

tract. From this diagram, it can be seen that while model 1 has a monotonically increasing function 

between predicted crash frequency and POIs visits, model 2 has a non-monotonic prediction, i.e., the 

predicted crash frequency increases with POI for low volumes of POI visits (lower than 10,000) and 

decreases with POI for large POI volumes. This indicates that model 1 and model 2 have a similar 

performance for low POI values, but model 2 is more realistic when the POI values are high.  

 

 

 
Figure 3-1 The relationships between cyclists crash prediction and POIs data in model 1 and model 2 
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3.3.1.3 Model 3 – Hoerl function NB model with Essential POIs 

The comparison between the results of model 2 and model 3 suggests that Essential POI visits 

increased the general fit of the model by improving the performance metrics. This is consistent with 

the expectation that the Essential POIs are a better surrogate for general demand and hence can predict 

cyclists’ crashes better.  

3.3.1.4 Model 4 – GWNBR model 

First, the bandwidth of the GWNBR model is selected based on AICc criteria. The maximum distance 

between the centroids of two census tracts within the Manhattan area is 21.90 km. The AICc criteria 

suggested that the optimal bandwidth is equal to the maximum distance, which implies that there is 

little spatial variation and the impact of exposure matrix to the cyclist involved crash is homogeneous 

within the Manhattan area. Therefore, the GWNBR model is essentially reduced to the global NB 

model (Model 3), and no significant improvement is observed compared to the global model. 

 
Table 3-2 Coefficient estimations of cyclists involved crash model 

 

Variable 
Model 1 Model 2 Model 3 GWNBR Coef. 

Coef. P(>|z|) Coef. P(>|z|) Coef. P(>|z|) Mean Min Max 

(Intercept) 1.66 0.00 -8.74 0.00 -8.72 0.00 -8.81 -9.58 -7.74 

Total POI visits 1.7e-7 0.00 0.00 0.00 - - - - - 

Log (Total POI visits) - - 0.69 0.00 - - - - - 

Essential POI visits - - - - -4.6e-7 0.00 -4.6e-7 -5.3e-7 -3.2e-7 

Log (Essential POI visits) - - - - 0.74 0.00 0.75 0.64 0.82 
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Shared bike trips 1.2e-6 0.00 - - - - - - -  

Log (Shared bike trips)   0.04 0.00 0.04 0.00 0.04 0.03 0.04 

Roadway density -2.2e-3 0.03 -1.6e-3 0.06 -1.4e-3 0.10 -1.4e-3 -1.5e-3 -1.2e-3 

Number of intersections 2e-03 0.00 - - - - - - -  

Log (Number of 

intersections) 
- - 0.37 0.00 0.33 0.00 0.33 0.30 0.38 

Male percentage 1.15 0.03 0.77 0.08 - - - -  - 

Subway station dummy 

variable 
0.17 0.06 0.15 0.05 0.13 0.07 0.13 0.12 0.14 

Fraction of people < 18 

years old 
-1.65 0.02 -1.44 0.02 -1.54 0.02 -1.45 -1.75 -0.64 

Fraction of people > 49 

years old 
-0.81 0.04 -1.30 0.00 -1.12 0.00 -1.17 -1.44 -1.01 

Percentage of households 

with family income less than 

$20,000 per year 

- - 0.95 0.00 1.03 0.00 0.98 0.64 1.17 

Log-Likelihood -869.16 -815.64 -808.30 -805.59 

AICc 1758.32 1655.28 1638.61 1638.39 

R^2 0.32 0.52 0.55 0.56 

RMSE 9.53 5.52 5.28 5.25 

MAE 5.11 3.86 3.75 3.73 

Bandwidth -  -  -  21.90 km 
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The results shown in Table 3-2 suggest that the log-likelihood and R2 increased significantly and 

AICc also decreased from model 1 to model 2 to model 3. The error matrix, RMSE, and MAE also 

decreases, which indicates that model 3 has better predictive power than models 1 and 2. The 

GWNBR model achieved comparative results with model 3. To further investigate model fit, 

Cumulative Residual (CURE) plots of the three global models for cyclists involved crash prediction 

are shown in Figure 3-2. CURE plots provide the cumulative residuals as a function of a given 

variable. Hauer (2015) explains that the CURE plots can be compared to the confidence intervals 

obtained assuming a random walk process to assess the overall model fit to the data (Hauer, 2015). 

Models with a good fit to the data should have no significant trend and instead oscillate around zero 

and generally stay within the confidence intervals. The CURE plots in Figure 3-2 demonstrate that 

model 3 provides the best fit of the observed data since the observed cumulative residuals have less 

systematic trends and more points fall within the 95% confidence intervals.  

 

 

       a). Model 1         b) Model 2          c) Model 3 

Figure 3-2 CURE plots for cyclists involved crash models 

 

The results of all those models suggest that the number of shared bike trips is significantly positively 

correlated to the cyclist crash frequency. And more specifically, they are positively correlated for 

every census tract as suggested by the GWNBR model. This is consistent with our expectation that 
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the introduction of shared bikes can increase the risk of cyclists involved in crashes. This could 

simply be an indication of the exposure variable being larger, i.e., more bike trips imply a larger 

number of bicycles at risk. However, it could also be due to other reasons such as more disruptions 

to vehicular traffic that lead to risky maneuvers or the presence of inexperienced bicycle users on the 

roads. Therefore, it is critical to consider the safety impact when introducing the shared bike system 

to a specific area. Further considering the results of model 3, the log form of Essential POI visits and 

subway station dummy variable has positive coefficients, which indicates that these POI categories 

and subway stations increased the cyclists' crash risk around them. Surprisingly, the roadway density 

has a negative coefficient, which indicates that the areas that have dense road networks have a lower 

frequency of cyclist crashes. In general, roadway density is larger in the center of the city and is more 

likely to be equipped with bike lanes or lower speed limits and travel speeds, which could decrease 

the crash risk. However, the positive coefficient of the number of intersections confirms that these 

facilities pose a significant crash risk to bicycle users. For the age groups, the middle age group, 18-

49 years old, is selected as the baseline, and the fraction of younger (<18 years old) and older (>49 

years old) people have negative coefficients. This indicated that the middle-aged population is 

associated with the highest hazard for cyclist crashes. Areas with lower family income have a higher 

risk compared to wealthy areas, which is selected as a baseline in the model. The large bandwidth of 

the GWNBR model indicated a homogeneous relationship between impact factors and cyclist 

crashes. One potential reason is that shared bike users might be comprised mostly of tourists within 

the Manhattan area and thereby their travel pattern is independent to the land use within the city. 

3.3.2 Pedestrian model 

Table 3-3 provides the best models obtained for pedestrian involved crashes within the individual 

census tracts. From the evaluation matrix in Table 3-3 and CURE plots in Figure 3-3, Model 3 

outperforms Model 1 and Model 2 for the prediction of pedestrian involved crashes. The optimal 

bandwidth for the GWNBR model is found to be 7.49 km, which indicated that there is spatial 
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variation in the pedestrian involved crashes. When the spatial variation is addressed by the GWNBR 

model, the predictive accuracy improved significantly increasing the 𝑅, from 0.50 to 0.59.  

The selection of significant variables reveals that the number of shared bike trips is significantly 

correlated to the pedestrian crashes as well, but not as significant as to the cyclist crashes. The 

coefficient of log (shared bike trips) is positive, while some census tracts have a negative estimation 

in the GWNBR model, which means that the shared bike generally poses hazards to the pedestrians. 

The log form of Essential POI visits also has a positive coefficient, which indicates that the 

distribution of POIs is tightly correlated with pedestrian crashes. Different from the cyclist crash 

model, the young group population is not significantly different from the baseline, the middle age 

group, while the old group population is negatively correlated with pedestrian crashes. This implies 

that the young and middle age group have similar risk levels of pedestrian involved crashes. 

Table 3-3 Coefficient estimations of pedestrian involved crash model 

 

Variable 
Model 1 Model 2 Model 3 GWNBR Coef. 

Coef. P(>|z|) Coef. P(>|z|) Coef. P(>|z|) Mean Min Max 

(Intercept) 1.88 0.00 -5.19 0.00 -5.17 0.00 -5.92 -8.24 -2.05 

Total POI visits 0.00 0.00 - - - - - - -  

Log (Total POI visits) - - 0.49 0.00 - - - - -  

Log (Essential POI visits) - - - - 0.51 0.00 0.57 0.11 0.76 

Shared bike trips 7.1e-7 0.03 - - - - - - -  

Log (Shared bike trips) - - 0.01 0.13 0.01 0.12 0.02 -0.12 0.03 

Number of intersections 1.6e-3 0.00 1.6e-3 0.00 1.6e-3 0.00 1.3e-3 1.9e-5 4.0e-3 

Population 2.5e-5 0.00 - - - - - - -  
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Log (Population) - - 0.11 0.00 0.10 0.00 0.08 -0.10 0.31 

Fraction of people >49 years 
old -0.55 0.12 -0.79 0.01 -0.69 0.02 -0.59 -4.23 1.11 

Percentage of households with 
family income less than 
$20,000 per year 

- - 0.55 0.04 0.52 0.04 0.48 -0.30 2.63 

Log-Likelihood -994.34 -962.53 -952.68 -922.88 

AICc 2002.67 1941.06 1921.36 1892.00 

R^2 0.34 0.46 0.50 0.59 

RMSE 12.77 8.55 8.26 7.63 

MAE 8.01 6.35 6.16 5.73 

Bandwidth  - -  -  7.49 km 

 

 

       a). Model 1         b) Model 2          c) Model 3 

Figure 3-3 CURE plots for pedestrians involved crash models 

 

3.3.3 Motorist model 

The model estimation results for the motorist crash models are presented in Table 3-4, and the CURE 

plots for the three global models are shown in Figure 3-4. The model fit results suggest that Model 3 

has the best predictive power and model fit. Interestingly, the motorist involved GWNBR model has 
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an optimal bandwidth that is very small, only 3.08 km, which indicates a significant spatial variation 

in the relationship between exposure matrix and crash frequency. Accounting for the spatial variation 

in the GWNBR model significantly improves the model accuracy, increasing the 𝑅, from 0.35 to 

0.58. This may indicate that the regional characteristics, such as land use, traffic network profile, or 

transportation infrastructure characteristics, impact the motorists involved crash frequency 

significantly across different areas. This is consistent with expectation since motorist involved 

crashes are more tightly related to the route profile and the surface transportation network, rather than 

characteristics related to other modes.  

The shared bike trip volumes are not significant in these models, which implies that the impact of 

shared bike is mostly on the cyclist and pedestrian involved crashes. However, the number of taxi 

trips, which is considered a surrogate for general traffic, is shown to be significant and positively 

related to motorist crashes. The motorist crash frequency is positively related to the route length and 

number of intersections. This indicates that the quality of the route network is critical to motorized 

vehicle safety. More detailed correlation between route profile, such as curvature, pavement 

condition, AADT, and traffic regulation, and the motorized vehicle crash frequency can be further 

analyzed by developing micro-level crash prediction models. 

 
Table 3-4 Coefficient estimations of motorists involved crash model 

 

Variable 

Model 1 Model 2 Model 3 GWNBR Coef. 

Coef. P(>|z|) Coef. P(>|z|) Coef. P(>|z|) Mean Min Max 

(Intercept) 1.96 0.00 -3.01 0.00 -2.80 0.00 -4.06 -19.32 4.21 

Total POI visits 0.00 0.44 - - - - - - -  
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Log (Total POI visits) - - 0.16 0.02 - - - - -  

Log (Essential POI visits) - - - - 0.16 0.01 0.12 -0.32 0.61 

Total route length 0.03 0.00 - - - - - - -  

Log (Total route length) - - 0.45 0.00 0.48 0.00 0.48 -0.34 1.35 

Number of intersections 1.7e-3 0.00 - - - - - - -  

Log (Number of 

intersections) 
- - 0.24 0.00 0.22 0.01 0.19 -0.60 0.70 

Total taxi trips 8.4e-8 0.01 - - - - - - -  

Log (Total taxi trips) - - 0.12 0.09 0.11 0.10 0.26 -0.37 1.03 

Fraction of people <18 years 

old 
1.70 0.03 1.62 0.02 1.55 0.03 0.86 -5.89 9.36 

Percentage of household with 

family income less than 

$20,000 per year 

1.59 0.00 1.54 0.00 1.50 0.00 1.00 -2.19 5.34 

Log-Likelihood -1199.45 -1181.63 -1181.23 -1108.78 

Degree of freedom 8.00 8.00 8.00 55.34 

AICc 2414.91 2379.25 2378.46 2355.63 

R^2 0.26 0.34 0.35 0.58 

RMSE 81.61 21.18 21.28 17.20 

MAE 19.86 14.26 14.25 11.48 
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Bandwidth - - - 3.08 km 

 

 

       a). Model 1         b) Model 2          c) Model 3 

Figure 3-4 CURE plots for motorists involved crash models 

 

3.3.4 GWNBR model comparison 

The GWNBR model reveals the different relationship between exposure matrix and crash frequency. 

The coefficients estimated for different explanatory variables for each census tract reflect this 

relationship at a local level. Take the Log (Essential POI visits), which is one of the mutual variables 

for three types of crash frequency predictive model, as an example. The coefficients of this variable, 

Log (Essential POI visits), for each census tract from three crash type models are plotted in Figure 

3-5. From these figures, it can be seen that the coefficients in the cyclists involved crash model are 

do not vary much spatially, and only have a small range from 0.64 to 0.82. To the contrary, the 

motorist involved crash and pedestrian involved crash models demonstrated a more uneven 

distribution of the coefficient of this variable. In both, the uptown and downtown have higher 

coefficients than the Middletown. In the motorist involved model, the coefficients of log (Essential 

POI visits) becomes negative near Central Park, implying that the less essential POI visits there are, 

the likelihood of motorist crashes increases. This makes sense considering that the essential POI visits 

are tightly associated with people’s daily needs while Central Park serves as more of a recreation 
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area; thus, the essential POI visits may not be a major contributor to the motorist crashes compared 

to the uptown and downtown. 

 

   

     a). Cyclist crash model           b). Pedestrian crash model           c). Motorist crash model 

Figure 3-5 Coefficients estimation of log(Essential POI visits) from GWNBR model for three types of 

crash frequency model 

 

The shared bike trips are only observed to be significant in the pedestrian and cyclist involved model, 

and the spatial variation of this coefficient obtained from the GWNBR model are shown in Figure 

3-6 for these two models. 
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      a). Pedestrian involved crash model             b). Cyclist involved crash model 

Figure 3-6 Coefficients estimation of Log (Shared bike trips) from GWNBR model for two types of 

crash frequency model 

 

The coefficient distributions imply that the shared bike trips have a more complicated impact on 

pedestrian involved crash than the cyclist involved crashes. While the cyclist involved model shows 

that the coefficient of the shared bike trips varies only slightly from 0.031 to 0.039, the pedestrian 

model has a larger range of variation and some of census tracts even have negative coefficients. These 

results might suggest that the usage of shared bikes in some of the northern parts of Manhattan can 

reduce pedestrian crash by replacing the more dangerous motorized vehicle for the daily trips. The 

consistency of the coefficients in the cyclist involved model suggest that the positive correlation 

between shared bike usage and cyclist involved crash is evidenced more uniformly across Manhattan. 

3.3.5 Model discussion 

The optimal NB model specifications for three types of crash frequency indicate that different types 
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of crashes are sensitive to different impact factors. Shared bike trips have a significant positive impact 

on cyclist and pedestrian crashes, but not on motorist crashes. Therefore, the shared bike system 

should be carefully distributed considering the potential risk, especially for areas where young people 

are concentrated. The associated hazard can be minimized by posing appropriate regulations or 

providing necessary bike facilities, such as bike lanes and more accessible helmet distributions.  

The traffic network characteristics have different impacts on the crash frequency. The dense route 

network is usually coupled with bike facilities and low-speed limits; therefore, the crash frequency 

of cyclists is negatively correlated with roadway density. Intersections, on the other hand, are always 

associated with a high risk of all types of crashes. This is reasonable as intersections are locations 

where all modes (pedestrians, cyclists, motorists) must interact and also when vehicles moving in 

different directions cross paths. 

Among the three types of crash frequency prediction models, the cyclist crash model achieved the 

highest accuracy, with 𝑅, equal to 0.55, while the pedestrian crash model and motorist crash model 

only have 𝑅, of 0.50, and 0.35, respectively. However, when accounting for the spatial variation of 

the explanatory variables using the GWNBR model, all three models achieved 𝑅, values between 

0.55-0.60, with the motorist crash model showing the largest increase in 𝑅,  followed by the 

pedestrian crash model. This indicates that motorist crashes and pedestrian crashes are more likely to 

be influenced by the spatial dependencies of the explanatory variables.  

The conclusion in this study highlights the crash risk brought by the shared bike trips. As the shared 

micromobility brought convenience and flexibility to the society, the traffic operators should be fully 

aware of the safety concerns associates with them and make efficiently corresponding polices to 

moderate the safety risk. Fox example, as the shared bike trips increase, the dedicated bike lane 

should be implemented to separate the motorized traffic flow from the cyclists and more detailed 

traffic regulation and operation strategy should be designed. Even the motorists involved crash 
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frequency is not found significantly related to the shared bike trips, it accounts for the highest share 

of fatalities. This study indicated the impact factor of motorists involved crash is highly spatially 

variant and specifically traffic regulation that reduced the crash risk should be made in a reginal level 

considering the local land use, demographic informal and traffic network characteristics. The similar 

conclusions can be extrapolated to other cities as well. 

3.4 SUMMARY 

This chapter collected several crash-related datasets to understand how various measures of travel 

exposure – shared bike use, person-trip information, subway flows – may impact crash frequency for 

bicyclists, pedestrians, and motorists. Negative binomial regression models were used to predict fatal 

+ injury crash frequencies of three different modes. Multiple specifications were considered and 

GWNBR models were further developed to explore the spatial variation. Comparison of the models 

indicated that the Hoerl function can improve the performance of the crash prediction model, and the 

POIs that are related to necessary trips are more tightly related to the crash frequency of all modes 

compared to using all POI trips. Spatial variation in the relationship was not observed in crashes 

involving cyclists; however, such variation was observed in crashes involving pedestrians and 

motorists. The model results indicate that an increase in shared bikes can increase the crash risk of 

cyclists and pedestrians but does not influence motorist crash risk. Other variables that are related to 

crash risk include the density of the roadway network, which reduces cyclist crash risk; the number 

of intersections, which increases crash risk for all modes; and younger population and lower family 

income, which increases crash risk.  

Despite the large dataset assembled for this work, not all factors that contribute to crashes were 

captured. Mainly, the motorist volumes were missing from the models which likely contributed to 

the lower predictive accuracy of the models. The model performance should be able further improved 

with novel datasets once available in the future. 
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4 SHARED BIKE AND TRAFFIC EFFICIENCY 

Bikes often share the road with cars on low-volume two-way roads and cars need to move across the 

centerline to use the opposing lane to pass bikes. When the opposing lane is occupied, the car cannot 

pass the bike safely and the bike creates a moving bottleneck for cars. Delay occurring due to this 

moving bottleneck largely depends on the speed and flow of cars and bikes, and the specific 

interactions of shockwaves of queues. To quantify the impact of bikes on normal traffic flow in this 

situation, a numerical solution to the Lax-Hopf equation is used to develop a macroscopic car bike 

mixed traffic flow model. Numerical experiments to understand the impacts of bike headway and 

headway variation, bike speed and speed variation, traffic volumes, and headway variations on the 

total traffic delay are conducted. The variations of bike speed, bike headway, and opposing traffic 

spacing are shown to diminish the impact of the interaction of queues on total delay. Finally, 

dedicated bike lanes are compared to mixed bike-car lanes to determine the application domains of 

dedicated bike lanes considering total, i.e., bike and car, delay.  

4.1 METHODOLOGY 

In this section, the methodology of mixed car and bike flow modeling is presented. The methodology 

applies to an isolated two-way undivided roadway with one lane in each direction. Cars traveling in 

the same direction as the bikes (called analysis direction traffic from here on) must move across the 

centerline of the roadway and borrow space from the opposing lane to pass a slow-moving bike. If 

there is no safe gap in the opposing direction, cars cannot pass a bike and have to queue until the 

opposing lane is free. Some assumptions are made for the methodology to be implemented:  

1) Car flow is homogeneous if not specifically noted. 

2) Traffic flows in both directions, and the free-flow speed in each direction is the same. Bicycle 

flow only exists in the analysis direction. However, the model can be modified to address 
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two-directional bike flow. 

3) Bicycles keep a constant speed and can pass each other freely without crossing into the 

opposing lane direction.  

4) Cars can change their speed instantaneously without accelerating or decelerating, and traffic 

flow can be modeled with a triangular fundamental diagram. 

5) The cars in the analysis direction always yield to cars from the opposing direction when 

passing a bike. 

4.1.1 Mixed car and bikes flow modeling 

First, the conditions under which cars can pass bikes are analytically derived. This derivation includes 

the determination of the maximum opposing flow, the duration that bikes block cars, and the 

maximum capacity of cars that can pass the bike. Next, the delay and queue length caused by a single 

bike is analytically derived assuming homogeneous traffic flow. Finally, the Lax-Hopf equations-

based numerical traffic flow model is described to evaluate scenarios in which multiple bikes create 

several moving bottlenecks that interact with each other.  

4.1.1.1 Conditions that allow for cars to pass bikes 

Figure 4-1 depicts a scenario in which a bike is travelling in the analysis direction, two cars also 

travelling in the analysis direction, and two cars travelling in the opposing direction. Note that in this 

figure all cars are shown with their lengths, and also a gap in front of them to depict a safe distance 

between vehicles. The time in between encountering consecutive opposing direction cars for a given 

bike, 𝑡), can be determined as shown in Equation 4-1. 

𝑡) = ℎ8RR
S3

S44S3
      4-1 

where ℎ8RR is the headway of cars in the opposing direction (ℎ𝑟), 𝑣B is the speed of the cars (𝑘𝑚/ℎ), 
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and 𝑣P is the speed of the bikes (𝑘𝑚/ℎ).  

 

 

a).             b). 

Figure 4-1 (a) Illustrative time space diagram of bike and cars in the analysis and opposing direction, 

(b) illustration of cars on the roadway at time instance one and two.  

 

Cars travelling in the analysis direction will not have large enough gaps to pass the bike for a small 

𝑡). Hence, there is a minimum 𝑡)	(or maximum flow) of cars travelling in the opposing direction to 

allow cars travelling in the analysis direction a large enough gap to pass the bike. To this end, Figure 

4-1a depicts the case where only a single car (referred to as the target car) travelling behind a bike is 

able to pass the bike between two cars travelling in the opposing direction. Note that there are two 

key features in this figure that allow this maneuver to happen. The first key feature is that at the time 

shown as 1, the backs of the cars travelling in the two directions are at the same point (see Figure 

4-1b). This is the earliest time point in which the target car can start using the opposing travel lane. 

The second key feature is that at the time point shown as 2, the fronts of the cars (including the safety 

margin) travelling in the two directions are at the same point. This is the latest time point in which 

the target car needs to be back in its own lane. Hence, the car needs to be able to complete its passing 
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maneuver between points 1 and 2. Therefore, the time in between the two opposing cars in Figure 

4-1 is the minimum required time to allow one car to pass. Considering Figure 4-1, denote the time 

in between the bike encountering two opposing cars that will only allow one car to pass as 𝑡)Q$5. 

This can be seen as the time in between points 𝑋 and 𝑌 in Figure 4-1. This time can be calculated as: 

𝒕𝒕𝒎𝒊𝒏 = 𝟐>𝑳𝒃'𝑳𝒄
𝒗𝒄)𝒗𝒃

+ 𝑳𝒄
𝒗𝒄
@ 𝒗𝒄
𝒗𝒃'𝒗𝒄

      4-2 

where 𝐿B is the length of a car plus a safety margin, 𝐿P is the length of a bike plus a safety margin. 

Then, the time during which no cars can pass the bike can be determined as the difference between 

𝑡)Q$5 and the time it takes a car to pass the bike, 𝑡R, as in Equation 4-3. 

𝒕𝒑 =
𝑳𝒄

𝒗𝒄)𝒗𝒃
       4-3 

Note that in this equation the length of the bike is not considered. This is only to aid in the 

implementation of the formulation in the Lax-Hopf framework. The Lax-Hopf framework assumes 

that the bike (i.e., moving bottleneck) does not have a length, and hence, the time it would take the 

car to pass the bike in the Lax-Hopf formulation is calculated rather than the actual time it takes the 

car to pass the bike. This simplification makes the Lax-Hopf model consistent with the analytical 

formulation. Finally, the duration in which a car cannot pass a bike, named the blocking time, 𝑡P , is 

determined as: 

𝒕𝒃 = 𝒕𝒕𝒎𝒊𝒏 − 𝒕𝒑 =
𝟐𝒗𝒄
𝒗𝒃'𝒗𝒄

>𝑳𝒃'𝑳𝒄
𝒗𝒄)𝒗𝒃

+ 𝑳𝒄
𝒗𝒄
@ − 𝑳𝒄

𝒗𝒄)𝒗𝒃
    4-4 

This blocking time is used as an input to the Lax-Hopf formulation to determine when the moving 

bottleneck has a capacity of zero.  

The above equations can also be used to determine the maximum opposing flow that will allow for 

cars to pass the bike, 𝑄8RR, and the lower bound of the maximum capacity of the roadway for cars in 

the presence of a bike,	𝑄Q@T, which is achieved when the opposing flow is 𝑄8RR. Considering Figure 

4-1 again, it can be seen that if the headway between opposing direction cars is 𝜀	smaller than what 
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is shown in the figure (where 𝜀 → 0), then no cars can pass the bike in the gaps between opposing 

cars. Hence, the maximum opposing flow, 𝑄8RR, can be determined considering the headway of the 

opposing cars as shown in this figure (i.e., time between points 𝑋 and 𝑍), and calculated in Equation 

4-5.  

𝑸𝒐𝒑𝒑 =
𝟏

𝒕𝒕𝒎𝒊𝒏.𝟏'
𝒗𝒃
𝒗𝒄
/      4-5 

Similarly, for a given 𝑄8RR, the time in between two consecutive cars that can pass a given bike is as 

shown in Figure 4-1, see time between points 𝐴 and 𝐵. This time can be used to determine a lower 

bound on the maximum capacity of the analysis direction in the presence of a bike, 𝑄Q@T. This is 

considered a lower bound since as 𝑄8RR  decreases, more cars can pass the bike between each 

opposing car. At the extreme end where 𝑄8RR → 0,  the upper bound on analysis direction capacity 

is observed, i.e.,  𝑄Q@T → 𝑄# , where 𝑄#  is the unrestricted capacity of the roadway. This lower 

bound on the maximum capacity of the analysis direction in the presence of a bike, 𝑄Q@T, can be 

determined as in Equation 4-6.  

𝑸𝒎𝒂𝒙 =
𝟏

𝟐2𝑳𝒃)𝑳𝒄𝒗𝒄*𝒗𝒃
'𝑳𝒄𝒗𝒄

3𝒗𝒄*𝒗𝒃𝒗𝒃)𝒗𝒄

= 𝒗𝒄(𝒗𝒄'𝒗𝒃)
𝟐(𝑳𝒃𝒗𝒄'𝟐𝑳𝒄𝒗𝒄)𝑳𝒄𝒗𝒃)     4-6 

4.1.1.2 Traffic flow theory equations for a single bike 

The impacts of a single bike can be determined utilizing traffic flow theory. Here, assume that traffic 

flow follows a triangular fundamental diagram with a free flow speed 𝑣B, congested backward wave 

speed −𝑤	(𝑤 > 0), maximum flow 𝑄# , and jam density 𝐾U. Assume that the traffic demand in the 

analysis direction is 𝑄>, see Figure 4-2a for the corresponding fundamental diagram. It is assumed 

that the bike creates a moving bottleneck with a passing rate of zero when it is active for a duration 

of 𝑡P as derived above. The corresponding time-space diagram of the moving bottleneck caused by 

the bike, and the flow/density states that arise as a result including the shockwaves are shown in 

Figure 4-2b. 
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a) Fundamental diagram      b) Time-space diagram 

Figure 4-2 Analytical calculation of single moving bottleneck 

 

From Figure 4-2a, the speed of the shockwave of the queue that grows behind the bike, 𝑢>V , can be 

calculated as: 

𝑢>V =
56478
6395

/W:
578
6495

/;:63

= S3E!X8S4/W:S4/W:!H
!X8S3/W:S4/W:!

    4-7 

The moving bottleneck, of length	𝑡P , then will create a short queue behind the bike. The total delay, 

caused by this single bottleneck can then be calculated using the time-space diagram shown in Figure 

4-2b as (derivation not shown for brevity): 

𝐷)8)@< =
W:)4

((S3/9:<)(S44!)(S3/S4)
,S3((!49:<)

   4-8 

Note that it is very difficult to extend the analytical approach to multiple bikes due to the potential of 

interaction between congested states that arise from multiple bikes. Hence, next the Lax-Hopf 

approach is proposed.   

4.1.1.3 Lax-Hopf approach for multiple bikes 

A numerical solution to the Lax-Hopf equations to solve the Lighthill-Whitham-Richards (LWR) 

problem has been proposed for when traffic flow follows a triangular fundamental diagram (Wu et 
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al., 2020; Hopf, 1969; Lax, 1957). This solution method is computationally efficient since it can be 

used to estimate the traffic states in the downstream of the road segment during the analysis window, 

𝑇, without evaluating the entire time-space domain. It is also reliable since its solution converges to 

the analytical calculation when the simulation step is small enough. Further, a moving bottleneck can 

easily be incorporated into the Lax-Hopf framework. Therefore, the Lax-Hopf equations are adopted 

in this study to model the car-bike mixed-flow while treating the slow-moving bikes as moving 

bottlenecks. 

The Lax-Hopf equation considers the traffic states that may arise, including a cumulative count of 

vehicles, density, and flow, at every time-space point resulting from an initial condition, upstream 

conditions, downstream conditions and internal conditions, see Figure 4-3. Initial conditions are the 

traffic states on the road segment at time zero, upstream and downstream boundary conditions are 

the traffic states at the upstream point and downstream point of the segment during the analysis time 

window, 𝑇, respectively, and internal conditions represent the moving bottleneck.  

 

 

a). initial conditions     b). upstream conditions        c). internal conditions 

Figure 4-3 Illustration of Lax-Hopf conditions 

 

The implementation of the Lax-Hopf equation to model the car-bike mixed traffic flow is described 

below and more details about the Lax-Hopf equations can be found in the literature (Wu et al., 2020). 
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Step 1. Initialize the time-space diagram 

The Lax-Hopf numerical evaluation is based on a matrix representing the cumulative count of 

vehicles at every time, 𝑡, and location, 𝑥, 𝑁(𝑡, 𝑥). Here it is assumed that the time/space domain is 

discretized with a time step, Δ𝑡, and a space step, Δ𝑥. To initialize the 𝑁, the initial traffic density 

along the road segment at time 0 is assumed to be 𝐾>, the upstream traffic flow during time 𝑇 is 

assumed to be 𝑄>, The downstream is constrained by the capacity, 𝑄B, and 𝑁(0,0) is assumed to be 

0. Then, the initial conditions, upstream conditions, and downstream conditions can be derived.  

Step 2. Initialized time-space location of the internal conditions 

Assume that there is a homogeneous opposing flow of 𝑄8RR traveling at a speed of 𝑣B. The time in 

between a bike encountering two consecutive opposing direction cars, 𝑡), can be calculated using 

Equation 4-1. In between two opposing cars, it is assumed that there is a time period, 𝑡P, during 

which a car cannot pass a bike in the presence of a car in the opposing lane as calculated in Equation 

4-4. Hence, there is a blocking time of 𝑡P during each 𝑡) that bike blocks following cars from passing 

it. Therefore, each bike generates a series of intermittent moving bottlenecks from (𝑇C, 𝑋C) to (𝑇: , 𝑋:) 

along the analysis direction: 

𝑇C = 𝑡2 + 𝑛 ∗ 𝑡)                   4-9 

𝑋C = 𝑛 ∗ 𝑡) ∗ 𝑣P      4-10 

𝑇: = 𝑡2 + 𝑛 ∗ 𝑡) + 𝑡P	      4-11 

𝑋: = 𝑛 ∗ 𝑡) ∗ 𝑣P + 𝑡P ∗ 𝑣P	     4-12 

where, 𝑡2 is the time when a bike enters the analysis segment, 𝑛 is the index of each moving 

bottleneck generated by this bike, 𝑛 = 1, 2, 3, … until 𝑇C ≥ 𝑇 or 𝑋C ≥ 𝑋. Note that this can be 

generated independently of the traffic conditions in the analysis direction because the opposing 

flow and the bike have priority, i.e., the traffic operations in the analysis direction do not impact 

the opposing direction or the bike trajectory.  
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Step 3. Calculate the cumulative vehicle count at the beginning of the internal conditions. 

The cumulative vehicle counts at each starting point of internal conditions are first estimated. The 

estimation of cumulative vehicle counts of interval conditions are similar to the methods for the 

downstream points but follow a temporal order from the left to the right on the timeline. Only the 

cumulative vehicle count at the starting point of an interval condition needs to be estimated since 

there is no passing through the bike and the cumulative vehicle count at the ending point remains the 

same. 

For each point, (𝑡, 𝑥),  the cumulative count of a vehicle equals the minimum considering all 

conditions (i.e., initial, upstream, downstream, and internal). Denote the location of the beginning of 

the condition 𝑖 as (𝑡$ , 𝑥$), the cumulative vehicle count of the beginning of condition 𝑖 is 𝑁$ , the 

density at point (𝑡, 𝑥) as 𝐾>, the flow at point (𝑡, 𝑥) as 𝑄>. 

For initial condition, 𝑖, if 𝑘	 ∈ [0, 𝐾B], the resulted cumulative count of the vehicle at point (𝑡, 𝑥) is 

𝐶$5$,$(𝑡, 𝑥) 

𝐶$5$,$(𝑡, 𝑥) = 	 {
𝑁$ + 𝐾>B𝑥 − (𝑥$ + 𝑣B𝑡)D 𝑥 ∈ [𝑥$ + 𝑣B𝑡, 𝑥$4" + 𝑣B𝑡]
𝑁$ + 𝐾BB𝑥 − (𝑥$ + 𝑣B𝑡)D 𝑥 ∈ [𝑥$ −𝑤𝑡, 𝑥$ + 𝑣B𝑡]

   4-13 

If 𝐾> 	 ∈ [𝐾B , 𝐾U], the resulted cumulative count of the vehicle at point (𝑡, 𝑥) is: 

𝐶$5$,$(𝑡, 𝑥) = 	 {
𝑁$ + 𝐾U𝑤𝑡 − 𝐾>B𝑥 − (𝑥$ −𝑤𝑡)D 𝑥 ∈ [𝑥$ −𝑤𝑡, 𝑥$4" −𝑤𝑡]
𝑁$4" − 𝐾BB𝑥 − (𝑥$ + 𝑣B𝑡)D 𝑥 ∈ [𝑥$4" −𝑤𝑡, 𝑥$4" + 𝑣B𝑡]

 4-14 

For upstream condition, 𝑖, the resulted cumulative count of the vehicle at point (𝑡, 𝑥) is 𝐶9R,$(𝑡, 𝑥). 

𝐶9R,$ =	|
𝑁$ + 𝑄> U𝑡 − 𝑡$ −

T
S3
V 𝑡 ∈ }𝑡$ +

T
S3
, 𝑡$4" +

T
S3
~

𝑁$4" + 𝑄# , U𝑡 − 𝑡$4" −
T
S3
V 𝑡 ∈ }𝑡$4" +

T
S3
, 𝑇~

    4-15 

For downstream condition, 𝑖 , the resulted cumulative count of the vehicle at point (𝑡, 𝑥)  is 

𝐶O8!5,$(𝑡, 𝑥). 
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𝐶O8!5,$ = |
𝑁$ + 𝐾U(𝑋 − 𝑥) + 𝑄> U𝑡 − 𝑡$ −

Y/T
!
V 𝑡 ∈ }𝑡$ +

Y/T
!
, 𝑡$4" +

Y/T
!
~

𝑁$4" + 𝐾U(𝑋 − 𝑥) + 𝑄# U𝑡 − 𝑡$4" −
Y/T
! V 𝑡 ∈ }𝑡$4" +

Y/T
S3
, 𝑇~

 4-16 

For internal conditions, 𝑖, the resulted cumulative count of the vehicle at point (𝑡, 𝑥) is 𝐶$5),$(𝑡, 𝑥). 

𝐶$5),$ = 𝑁$ + 𝑞?(𝑡 − 𝑡Z + 𝑡$) + 𝐾#𝑣′𝑡′    4-17 

where,	𝑞? is the passing rate of the internal condition, which is assumed to be 0 in this study,  𝑡Z, 𝑣′ 

are given by the following equations for the three domains (as shown in Figure 4-3). 

 a). when (𝑡, 𝑥) within the forward domain, 

𝑡Z = T/ET"4S4()/)")H
S3/S4

, 𝑣Z = 0     4-18 

 b). when	(𝑡, 𝑥)	within the backward domain, 

𝑡Z = ET"4S4()/)")H/T
S44!

, 𝑣Z = 𝑣B +𝑤    4-19 

c). when	(𝑡, 𝑥)	within the central domain, 

𝑡Z = 𝑡 − 𝑡$4", 𝑣Z = 𝑣B −
(T/T"91)

)=
    4-20 

The final cumulative count of the vehicle at (𝑡, 𝑥) is the minimum value of all conditions: 

𝑁(𝑡, 𝑥) = min U𝑚𝑖𝑛
$
B𝐶$5$,$D ,𝑚𝑖𝑛$ B𝐶$9R,$D ,𝑚𝑖𝑛$ B𝐶O8!5,$D ,𝑚𝑖𝑛$ B𝐶$5),$DV   4-21 

All internal conditions are calculated by repeating Step 3 for every moving bottleneck of every bike. 

Step 4. Calculate the cumulative vehicle count at the downstream boundary.  

Once the internal conditions are all calculated, the cumulative vehicle count downstream can be 

updated considering all conditions as described in Step 3.  

The cumulative vehicle count downstream and upstream can be then used to determine the total delay 

that cars encounter on a given roadway segment within an analysis window.  
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4.1.2 Impact of bike lanes on traffic efficiency 

A dedicated bike lane can be implemented by taking away space from cars such that the car and bikes 

do not interact with each other on the roadway. On a two-lane roadway this is typically done by 

narrowing the car travel lanes. This is expected to have two impacts: 1) the free-flow speed of cars 

will be reduced due to the narrowing of the lane; and 2) bikes would not be able to pass each other 

due to the lack of space. The car and bike delays associated with these two phenomena are discussed 

next.  

4.1.2.1 Car delay with the bike lane 

A dedicated bike lane is often implemented by taking space away from cars and dedicating it to bikes, 

which narrows the width of the motorized vehicle lane. The narrowed lane causes cars to travel at 

lower speeds. The Highway Capacity Manual provides values for the reduction in free-flow speed on 

two-lane roadways as a function of lane width and shoulder width (National Academies of Sciences, 

2022). The adjustment assumes the standard lane width to be 3.66 m (12 ft) and the standard shoulder 

width to be 1.82 m (6 feet). The adjustment for lane width and shoulder width from Highway Capacity 

Manual, converted to the metric system for consistency, is shown in Table 4-1 (National Academies 

of Sciences, 2022). 

 
Table 4-1 Reduction in free-flow speed (km/h) 

 

Lane width (m) 
Shoulder width (m) 

[0.61, 1.22) [1.22, 1.82) [1.82, ~) 

[3.05, 3.35) 5.95 3.86 1.77 

[3.35, 3.66) 4.83 2.74 0.64 

[3.66, ~) 4.18 2.09 0.00 
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To get a generalizable conclusion, different speed reduction levels are tested in this study and 

domains of application of bike lanes are determined. 

4.1.2.2 Bike delay with the bike lane 

When the bikes are not allowed to pass each other, bikes with different desired speeds can lead to 

delay. Figure 4-4 shows the trajectory of bicycles with dedicated bike lane in solid lines, note how 

some need to slow down when the catch up with other bicycles. The virtual trajectories of the same 

bicycles if they could pass one another is shown as a grey dotted line. Then the delay from bikes is 

calculated as the difference between trajectories with and without bike lane at the downstream end 

of the roadway. 

 

 

 
Figure 4-4 Trajectories of bikes with and without bike lanes 

 

4.2 RESULTS AND DISCUSSION 

In this section, the car-bike mixed traffic flow model is implemented for different scenarios. The 

model is first evaluated compared to the analytical calculation results to determine its reliability. A 
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series of experiments are then conducted to analyze the impact of several parameters on the total 

mixed traffic delay, followed by the analysis of impacts of variations in real traffic flow. Finally, 

based on the total delay calculation, the application domains of dedicated bike lane are derived for 

different scenarios.  

4.2.1 The total delay in mixed traffic flow 

In this section, first, the maximum opposing traffic flow is analyzed. Then, a simple case study 

considering the moving bottleneck created by a single bike is conducted to illustrate the accuracy of 

the Lax-Hopf framework. The impact of car and bike speeds and flows on traffic delay is explored 

based on a single bike and multiple bikes in two consecutive sub-sections.  

Unless specified otherwise, the following parameters are used for the evaluation of the proposed 

models: car flow in the analysis direction,	𝑄> = 250	𝑣𝑒ℎ/ℎ; car flow in the opposing direction, 

150	𝑣𝑒ℎ/ℎ ;  car free-flow speed (both directions), 𝑣B = 45	𝑘𝑚/ℎ ; bike speed, 𝑣P = 20	𝑘𝑚/ℎ , 

roadway capacity, 𝑄B = 1500	𝑣𝑒ℎ/ℎ ; and backward wave speed, 𝑤 = −𝑣B/4 . The minimum 

spacing in the traffic flow is set as the average length of a vehicle plus a clearance space of 2	𝑠𝑒𝑐𝑠 

driving distance when driving at their current speed, e.g., 𝐿B = 𝑑B + 2 ∗ 𝑣B/3.6, 𝐿P = 𝑑P + 2 ∗

𝑣P/3.6, in units of meter, where 𝑑B is the average length of a passenger car which is	5	𝑚𝑒𝑡𝑒𝑟𝑠 in this 

study, and 𝑑P	is the average length of a bike, which is 2	𝑚𝑒𝑡𝑒𝑟𝑠	in this study. For this set of 

parameters, 𝑡P, is calculated using Equation 4-3 as 7.6	𝑠𝑒𝑐. 

4.2.1.1 Maximum opposing traffic flow for different car and bike speeds 

The maximum opposing traffic flow is the critical opposing flow beyond which the cars in the 

analysis direction would not have large enough gaps to pass a bike. The results of maximum opposing 

traffic flow for different combinations of car speeds and bike speeds, obtained from Equation 4-5, 

are plotted in Figure 4-5. For a given bike speed, a higher car speed allows a higher opposing traffic 
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flow due to a shorter passing time. Similarly, as the bike speed decreases, the passing time becomes 

even shorter, and the maximum opposing traffic flow becomes larger. However, the maximum 

opposing flow does not increase linearly with car speed. Generally, the opposing traffic flow needs 

to be lower than 300	𝑣𝑒ℎ/ℎ (assuming homogenous flow) to allow a car-bike mixed traffic flow. 

Otherwise, cars will experience significant delays since there will not be long enough gaps to pass a 

slow-moving bike. Scenarios as such would warrant the implementation of a dedicated bike lane to 

reduce traffic delays. Based on these results, the baseline opposing traffic flow for all following 

scenarios is set as 150	𝑣𝑒ℎ/ℎ, which is lower than the maximum opposing flow. 

 

 

 
Figure 4-5 Maximum opposing traffic flow for different car speeds 

 

4.2.1.2 Evaluation of the Lax-Hopf equations 

To compare the analytical equations to the Lax-Hopf framework, the total delay of cars resulting 

from the moving bottleneck of a single bike is calculated using both approaches. A time-space domain 

of 30	𝑠𝑒𝑐	 by 100	𝑚𝑒𝑡𝑒𝑟𝑠  with a moving bottleneck starting from 𝑇" = 10	𝑠, 	𝑋" = 20	𝑚  is 

considered.  
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Figure 4-6a shows the analytical shockwaves predicted for a single bike in between two cars 

travelling in the opposing direction, assuming there is enough time to clear the queue behind the bike 

before the next opposing direction vehicle is encountered. Figure 4-6b shows the same scenario 

predicted by the Lax-Hopf framework, which displays the traffic density of each time-space point. 

The figures visually appear to align the Lax-Hopf results with the analytical results very well. 

 

 

      a)  Analytical calculations        b) Lax-Hopf framework 

Figure 4-6 Comparison of shockwaves (and traffic density) for a moving bottleneck  

 

For the same case study, Table 4-2 the results of the delay obtained from the analytical approach and 

the Lax-Hopf framework. Different time steps and space steps of the numerical evaluation are 

considered since this impacts the accuracy of the Lax-Hopf model. A small step will result in a high 

accuracy but could be computationally expensive. The results suggest that when the evaluation time 

step is less than 0.05	𝑠𝑒𝑐 and the space step is less than 0.05	𝑚𝑒𝑡𝑒𝑟, the errors between the Lax-

Hopf approach and the analytical results are less than 1%, and the corresponding computational time 

is also acceptable. Therefore, an evaluation time step of 0.05	𝑠𝑒𝑐 and space step of 0.05	𝑚𝑒𝑡𝑒𝑟 are 

selected for the remaining analyses.  

 
Table 4-2 Comparison of Lax-Hopf approach and analytical equations for different time steps. 
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Time step  
(𝒔𝒆𝒄) 

Space step 
(𝒎𝒆𝒕𝒆𝒓) 

Total Delay from 
Lax-Hopf Equation 
(𝒗𝒆𝒉 ∗ 𝒔𝒆𝒄) 

Total Delay from 
Analytical Calculation 
(𝒗𝒆𝒉 ∗ 𝒔𝒆𝒄) 

Error ratio Simulation 
time (𝒔𝒆𝒄) 

1 1 1.1077 1.1542 4.03% 0.0107 

0.5 0.5 1.2076 1.1542 4.62% 0.0110 

0.1 0.1 1.1358 1.1542 1.61% 0.0189 

0.05 0.05 1.1451 1.1542 0.81% 0.0349 

0.01 0.01 1.1524 1.1542 0.19% 0.3733 

0.005 0.005 1.1533 1.1542 0.08% 1.2875 

 

4.2.1.3 Impact of different car and bike speeds 

Next, the impact of free-flow speed of cars and bike speeds are explored to analyze their impact on 

the total delay. A time-space domain of 300	𝑠𝑒𝑐	by 1000	𝑚𝑒𝑡𝑒𝑟𝑠 is adopted here. The bike speed is 

varied from 15	𝑘𝑚/ℎ to 25	𝑘𝑚/ℎ and the car free-flow speed is varied from 30	𝑘𝑚/ℎ to 60	𝑘𝑚/ℎ. 

Note that here it is assumed that all bikes travel at the same speed, and within the analysis window 

each bike generates several moving bottlenecks with a passing rate of zero.  

First, only a single bike is considered to avoid spillover of queues from one bike to another. The total 

delay predicted from the analytical calculations, as shown in Equation 4-8, is compared to the 

outputs of the Lax-Hopf numerical evaluations, see Figure 4-7. For the analytical approach, it is 

assumed that each blocking time of a bike creates an independent queue, and hence the delays from 

each blocking instance are summed to get the overall delay. However, this approach ignores the 

interactions that may arise between different queues. 

Figure 4-7 shows that the analytical calculations and the Lax-Hopf model result in mostly consistent 

delay values. For a specific car speed, as the bike speed increases generally the total delay reduces 



82 

since the speed difference between the car and the bike reduces. However, when the car speeds are 

low and the bike speeds are high (i.e., the difference between the bike and car speeds become too 

small), the total delay significantly increases. This is observed since the blocking time of cars (which 

depends on the inverse of the difference between the car and bike speed, see Equation 4-4) becomes 

too large. Hence, there is not enough time between opposing cars to allow any cars to pass the bike. 

In this scenario, the car needs to queue behind the bike for the entire analysis window leading to large 

delays. On the other hand, for a specific bike speed, as the car speed increases, the total delay is 

expected to increase as well. However, the impact of the car speed is not as significant as the bike 

speed. 

 

 

a) Analytical calculation                                       b) Lax-Hopf model 

Figure 4-7 Total delay (𝒗𝒆𝒉 ∗ 𝒔𝒆𝒄) caused by a single bike 

 

Next, a relatively high bike flow of 100	𝑏𝑖𝑘𝑒/ℎ is selected to explore how queue spillovers might 

change the results. This corresponds to about 8 bikes in a 300	𝑠𝑒𝑐𝑠	analysis window. The total delay 
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from the analytical calculation and the Lax-Hopf framework is shown in Figure 4-8. 

 

  

a) Analytical calculation                                  b) Lax-Hopf model 

Figure 4-8 Total delay (𝒗𝒆𝒉 ∗ 𝒔𝒆𝒄) caused by a bike flow of 𝟏𝟎𝟎	𝒃𝒊𝒌𝒆/𝒉 

 

From Figure 4-8, the analytical calculation results demonstrate a similar pattern to what was observed 

for a single bike in Figure 4-7 since the total delay is only a summation of the expected delay from 

each individual bottleneck. However, the Lax-Hopf results display a more complicated pattern when 

the car and bike speeds vary. The interaction among different bottlenecks can either increase or 

decrease the total delay.  

To understand this better, the time-space diagrams for when the car speed is 45	𝑘𝑚/ℎ, and the bike 

speed is 10	𝑘𝑚/ℎ and 12	𝑘𝑚/ℎ, are shown in Figure 4-9.  
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a). Time-space diagram of traffic density when the bike speed is 𝟏𝟎	𝒌𝒎/𝒉 

 

b). Time-space diagram of traffic density when the bike speed is 𝟏𝟐	𝒌𝒎/𝒉 

Figure 4-9 Different interaction patterns between bottlenecks 

 

From Figure 4-9, it can be seen that when the bike speed is 10	𝑘𝑚/ℎ (Figure 4-9a), the traffic 

discharged from the upstream bottleneck will queue behind another bike downstream again and 

therefore has a higher total delay (98.69	𝑣𝑒ℎ ∗ 𝑠𝑒𝑐) than the analytical delay (90.72	𝑣𝑒ℎ ∗ 𝑠𝑒𝑐). On 

the other hand, when the bike speed increases to 12 km/h, the interaction among different bottlenecks 

possesses another pattern that reduces the total delay – the bottlenecks in the upstream block most of 

the traffic from arriving at the downstream bottlenecks, therefore, the downstream bottlenecks 
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become inactive and the total delay (40.34	𝑣𝑒ℎ ∗ 𝑠𝑒𝑐) is lower compared to the analytical results 

(69.49	𝑣𝑒ℎ ∗ 𝑠𝑒𝑐). Hence, it can be seen that the analytical equations are unreliable when multiple 

bikes are considered.  

It is important to note that these results assume completely regular headways of bikes and cars 

traveling in the opposing direction. Hence, the impacts of variability in bike and car headways are 

explored in the next section.  

4.2.1.4 Impact of different car and bike flows 

The bike flow and car flow have a significant impact on the total traffic delay. Generally, both higher 

bike flow and car flow are expected to result in higher traffic delays. However, the interaction 

between different bikes can make the situation complex. To understand this, the bike flow is varied 

from 50	𝑏𝑖𝑘𝑒/ℎ to 150	𝑏𝑖𝑘𝑒/ℎ, and the car flow is varied from 100	𝑣𝑒ℎ/ℎ to 600	𝑣𝑒ℎ/ℎ. The total 

delay from the Lax-Hopf evaluation with different bike flow and car flow for different bike speeds 

is plotted in Figure 4-10. Note that the analytical equations are no longer used since previously it was 

found that analytical equations were not reliable when considering multiple bikes simultaneously. 
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Figure 4-10 Total delay from the Lax-Hopf framework with different bike flows and car flows (𝒗𝒆𝒉 ∗

𝒔𝒆𝒄) 

 

From Figure 4-10, it can be seen that as car flow increases, the total delay will increase as expected. 

As the bike flow increases, on the other hand, the total delay has an irregular pattern but generally 

increases as well. This irregular pattern is due to the different interactions among bottlenecks as 

shown in Figure 4-9.   

From the above analysis it can be determined that the specific interaction pattern of bikes and 

opposing cars impacts the total delay significantly. In reality, variations in traffic flow might break 

those patterns and change the traffic delay. In the next section, the impact of variation in different 

parameters on delay is explored. 

4.2.2 Impact of variations in mixed traffic flow on delay 
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In the previous section, traffic flow is assumed to be homogenous, and all cars and bikes are 

uniformly distributed on the roadway. Some variations that break the homogeneity, such as bike 

speed variation, bike headway variation, and opposing traffic spacing variation, may impact the 

interaction of the shockwaves caused by different bikes. In this section, the impacts of non-

homogeneous bike headway, varying bike speed, and non-homogeneous opposing car spacing on 

delay are analyzed. 

4.2.2.1 Sensitivity to the bike headway variation 

Here it is assumed that the bike headway follows a normal distribution, with a mean equal to 36	𝑠𝑒𝑐𝑠 

(which corresponds to a bike flow of 100	𝑏𝑖𝑘𝑒/ℎ), and the standard deviation is varied from 0 to 

10	𝑠𝑒𝑐. For each headway variation and bike speed combination, 100 headway samples are generated 

and the corresponding average total delay for these 100 bikes is calculated as shown in Figure 4-11.  
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Figure 4-11 Total delay of mixed traffic flow with different bike headway variation (𝒗𝒆𝒉 ∗ 𝒔𝒆𝒄) 

 

Figure 4-11 suggests that the bike headway variation has the most relative impact on delay when the 

bike speeds are low. This is especially true since the lower bike speeds result in interactions of 

shockwaves that are highly sensitive to the arrival time of the bikes. However, interestingly bike 

headway variation does not always have the same impact on delays – for some bike speeds large bike 

headway variations reduce the total delay while for other bike speeds the opposite is true. Further, 

for large bike headway variations, the total delay values converge to the analytical delay as shown in  

Figure 4-8a (when the car speed is 45 km/h). This suggests that the headway variation could diminish 

the impact of the interaction of different shockwaves when determining the total delay. Hence, the 

analytical calculations can be used to approximate the delays in real-world scenarios. 

4.2.2.2 Sensitivity to the bike speed variation 

The bike speed is one of the factors that determine the required passing maneuver time for the 

following cars. Previous results revealed that the bike speed can significantly influence the total 

delay. Hence, here scenarios in which bikes have different speeds, i.e., bike speed variation, are 

considered. It is assumed that the bike speed is normally distributed, with a mean varied from 10 to 

30	𝑘𝑚/ℎ, and the standard deviation is varied from 0	𝑘𝑚/ℎ to 5	𝑘𝑚/ℎ. The experiment is repeated 

100 times and the average total delay for each bike speed and bike speed variation combination is 

calculated and demonstrated in Figure 4-12. 
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Figure 4-12 Total delay of mixed traffic flow with different bike speed variation (𝒗𝒆𝒉 ∗ 𝒔𝒆𝒄) 

 

The results suggest that generally increasing bike speed variation leads to larger delays, except for a 

few specific bike speeds. This is likely due to the bike speed variation changing the shockwave 

interactions. However, variations in bike speeds not only change the relative position of each 

bottleneck but also change the duration of the blocking time. Therefore, when the bike speed variation 

is high, the total delay is slightly higher than the analytical calculation of total delay (which assumes 

that each bottleneck behind the bike can be treated independently).  

4.2.2.3 Sensitivity to the opposing car spacing variation  

The distribution of cars in the opposing lane dictates when cars traveling behind a bike can pass the 

bike. Hence, variation in the spacing of the opposing cars will influence the blocking times and the 

interactions among the shockwaves of queues created behind the bike. Here, it is assumed that the 
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opposing car spacing is normally distributed with an average of 300	𝑚 (which corresponds to an 

opposing traffic flow of 150	𝑣𝑒ℎ/ℎ ) and standard deviation ranging from 0	𝑚  to 100	𝑚 . The 

experiment is repeated 100 times for different combinations of bike speed and opposing car spacing 

variation, and the average total delay for each combination is calculated and demonstrated in Figure 

4-13. 

 

 

 
Figure 4-13 Total delay of mixed traffic flow with different opposing car spacing variation (𝒗𝒆𝒉 ∗ 𝒔𝒆𝒄) 

 

The results suggest that in general, increasing variation in opposing car spacing leads to larger delays. 

This is likely because uneven headways in the opposing direction can lead to a bike encountering 

multiple opposing cars consecutively which can lead to a long blocking time for cars following the 

bike. This long blocking time can then lead to larger delays for the cars traveling behind the bike. 

Therefore, when the opposing car spacing variation is high (100	𝑚), the total traffic delays are higher 
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than the analytical calculations of total delay as shown in Figure 4-8a (when car speed is 45	𝑘𝑚/ℎ) 

4.2.3 Domains of application of dedicated bike lanes 

One option to improve the efficiency and safety of mixed traffic is to dedicate space for bikes on the 

roadways. The bike lane can be set either by a solid white line on the pavement or a strip garden that 

completely separates it from the main traffic. By separating the car flow and bike flow, the interaction 

between them is minimized and cars have a safer space to pass the slow-moving bikes without 

interacting with the opposing traffic. However, separating a bike lane from the existing roadway 

usually leads to a narrow roadway for cars leading to lower free-flow speeds (National Academies of 

Sciences, 2022). Further, bikes usually do not have enough space to pass each other, so the bicycle 

passing maneuver is assumed to not be allowed on the dedicated lane  

Here, two components of delay are considered when dedicated bike lanes are established: delay due 

to reduced car speed and delay due to bike queues. Contrary to the car delay used in previous sections, 

person delay is used as the analysis metric in this section. A converge ratio δ between car delay and 

person delay is used to transfer the car delay to the person delay making them comparable. This 

converge ratio is determined by the average car passenger occupancy and time value ratio between 

motorized car drivers and cyclists. In this study, the time value of drivers and cyclists is assumed to 

be same. Therefore, the total delay is calculated by the sum of the bike delay and car delay multiplied 

by the average car passenger occupancy, which is 1.59 person/vehicle (Center for Sustainable 

Systems, University of Michigan, 2021). 

The same parameters as before are used for the analysis: car flow in the analysis direction,	𝑄> =

250	𝑣𝑒ℎ/ℎ; car flow in the opposing direction, 150	𝑣𝑒ℎ/ℎ; and car free-flow speed (both directions), 

𝑣B = 45	𝑘𝑚/ℎ. The bikes speed is assumed to have an average of 20	𝑘𝑚/ℎ and standard variation 

of 3	𝑘𝑚/ℎ. The arrival time of bikes on the upstream of the segment are uniformly distributed across 

the time window. The car speed is assumed to reduce by 1.2	𝑘𝑚/ℎ when a dedicated bike is added. 
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Since the bikes speed and time to enter this segment are randomly distributed, the average delay of 

100 times repetition for each case is used as the results. The total person delay from mixed traffic 

flow without bike lane (where the person delay is the same as the car delay since bikes do not 

experience any additional delays), the car and bike delays when a lane is dedicated for bikes, along 

with the difference in the person delay between mixed-flow and dedicated bike lane scenarios are 

shown in Figure 4-14. 

 

 

a). Total delay of mixed traffic flow without bike lane   b). Car delay with bike lane 
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c). Bike delay with bike lane   d). Changes of total delay when adding a bike lane 

Figure 4-14 Delays of the basic experiment in unit of 𝒑𝒆𝒓𝒔𝒐𝒏 ∗ 𝒔𝒆𝒄 

 

Figure 4-14a shows the total person delay when bikes randomly arrive at the upstream of the segment 

with exponentially distributed headways at speeds drawn from a normal distribution 𝑁(20,3). Note, 

this is different from Figure 4-10 which assumes that bike flow is homogeneous. The randomness in 

the bike speed changes the results such that the total delay increases both with bike flow and car flow. 

Figure 4-14b shows the car delay due to the lower free flow speed when dedicating space for bikes, 

and as expected is independent of the bike flow.  Figure 4-14c shows the bike delay when bikes 

cannot pass each other within the narrow dedicated bike lane, and is independent of the car flow (note 

that the slight variations are due to the randomness). The change in total person delay after adding a 

dedicated bike lane is shown in Figure 4-14d, where negative numbers represent a delay reduction 

with bike lane and positive numbers represent higher delay with bike lane. The solid line shows the 

border above which setting a dedicated bike lane can reduce the total delay. The results indicate as 

the bike or car flow increase, bike lanes can be useful to reduce overall person delay. Note that both 

the bike and car flow are important in determining the domains of application.  
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4.2.3.1 Impact of speed reductions on the domains of application of bike lanes 

Figure 4-15 shows the changes in domains of application if the implementation of dedicated bike 

lane results in different car free-flow speed reductions. 

 

 

          a). Speed reduces 𝟎. 𝟖	𝒌𝒎/𝒉   b). Speed reduces 𝟏. 𝟔	𝒌𝒎/𝒉 

Figure 4-15 Change in total delay due to the presence of a dedicated bike lane for different car speeds 

reductions (𝒑𝒆𝒓𝒔𝒐𝒏 ∗ 𝒔𝒆𝒄) 

 

The domains of application of bike lane in Figure 4-15 suggests that if dedicating a lane for bikes 

reduces the car speed more, the domains of application of a bike lane become smaller, i.e., bike lanes 

can reduce total person delay only for higher bike flows or car flows. This is expected since in these 

scenarios the increase to car delay from dedicating a lane for bikes is larger than the car delay when 

cars have to follow bikes and only occasionally encounter them. For example, for a roadway with a 

car flow of around 250	𝑣𝑒ℎ/ℎ, a dedicated bike lane would reduce the overall person delay as long 

as there are more than 50	𝑏𝑖𝑘𝑒/ℎ  if the bike lane only reduces car speeds by 0.8	𝑘𝑚/ℎ . This 

threshold is increases to about 110	𝑏𝑖𝑘𝑒/ℎ if the bike lane reduces car speeds by 1.6	𝑘𝑚/ℎ.  



95 

4.2.3.2 Impact of traffic flow on the domains of application of bike lanes 

The opposing traffic flow is a critical criterion in deciding to dedicate a lane for bikes, since cars rely 

on the gaps in the opposing flow to pass the bike. Here, two different opposing traffic flows which 

are higher and lower than the base experiment, respectively, are tested and the domains of application 

of bike lanes are shown in Figure 4-16. 

 

 

             a). Opposing traffic flow of 𝟏𝟐𝟎	𝒗𝒆𝒉/𝒉  b). Opposing traffic flow of 𝟏𝟖𝟎	𝒗𝒆𝒉/𝒉 

Figure 4-16 Change in total delay due to the presence of a dedicated bike lane for different opposing 

traffic flow (𝒑𝒆𝒓𝒔𝒐𝒏 ∗ 𝒔𝒆𝒄) 

 

Figure 4-16 suggests that the domains of application of bike lanes become narrower as the opposing 

flow becomes lower (120	𝑣𝑒ℎ/ℎ). This is because as the opposing flow decreases, cars have more 

chances to pass the bikes using the opposing traffic lane so that there is higher tolerance of bikes in 

the mixed traffic flow. Correspondingly, the domains of application increase for a larger opposing 

traffic flow (180	𝑣𝑒ℎ/ℎ). Note, the benefit of bike lanes is more pronounced when the traffic flows 

in two directions are not the same and the analysis direction has higher traffic flow.  
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4.2.3.3 Impact of opposing traffic spacing variation on the domains of application of bike lanes  

 

 

   b). Opposing spacing variation 𝟓𝟎	𝒗𝒆𝒉/𝒉  c). Opposing spacing variation 𝟏𝟎𝟎	𝒗𝒆𝒉/𝒉 

Figure 4-17 Change in total delay due to the presence of a dedicated bike lane for different opposing 

spacing variation (𝒑𝒆𝒓𝒔𝒐𝒏 ∗ 𝒔𝒆𝒄) 

 

Variation in the spacing of the opposing traffic will impact the total delay when there is no bike lane, 

however, does not impact delay when there is a bike lane. In the above experiments, the opposing 

spacing is constant, e.g., 300	𝑚 with standard variation of 0	𝑚. Figure 4-17 shows the domains of 

application of bike lanes considering different opposing spacing standard variations, e.g., 50	𝑚 and 

100	𝑚. It can be seen that as the opposing spacing variation increases, the domains of application of 

bike lanes become slightly larger. This is expected since Figure 4-13 shows that the total delay 

increases as the opposing spacing variation increases in a mixed flow scenario when the average bike 

speed is 20 km/h. 

4.2.4 Discussion 

This study developed the car-bike mixed traffic flow model based on several assumption. However, 
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some of the derived conclusions may still stands of can be easily adopted when the assumptions are 

relaxed.  

The proposed car-bike mixed traffic flow is based on two-way undivided roadways with one lane in 

each direction. When there are multi-lanes in each direction, there usually have enough space to set 

a separating bike lane if there is significant bike flow along the road. In the situation of no bike lane 

on multi-lane roadways, it can be modeled in scenarios. Assuming there is 𝑛 lanes on the road, when 

the car flow is lower than the capacity of 𝑛 − 1 lane, the bikes will ride on the rightmost lane and the 

cars that need to pass a bike can change to the left lanes to finish the passing maneuver. In this case, 

there will be no delay occur. When the car flow is higher than the capacity of 𝑛 − 1 lane, the roadway 

can be separated into two system—a. left 𝑛 − 1 lane and b. the rightmost lane. The cars will tend to 

use the left lanes to avoid intercourse with bikes. Therefore, in the left 𝑛 − 1 lane, there will be 

saturating traffic flow on all of the lanes. The rest traffic flow will be distributed to the rightmost lane 

and the proposed car-bike mixed traffic flow may apply to this situation. The only necessary 

modification will be the way to decide when a car can pass the bike. In the current study, it is based 

on weather a car occupying the opposing lane or not; in the multi-lane situation, it will be decided 

based on if the traffic flow up to the capacity of 𝑛 − 1 lanes. This modification could extend the 

implementing scenario into more broad cases.  

This study only considers one directional bike flow along the analyzing direction. However, the 

proposed model can be adopted to address two directional bike flow as well. The major difference 

will be that traffic flow in both directions will not be homogeneous. This will cause the length of 

each moving bottlenecks cannot be explicitly calculated. It will require to dynamically calculate the 

time-space diagram time step by time step. In each time step, the traffic status, e.g., traffic density, 

traffic speed, and traffic flow, need to be updated for both directions, and based on the updated traffic 

status, whether a bike will generate a moving bottleneck can be decided for both directions. The 

traffic delay can be calculated in the same way when the entire time-space diagram is derived. More 
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detailed research to address two directional bike flow is worthy to conduct in the future. 

The evaluation of the best domain of dedicated bike lane application is only based on the traffic 

efficiency in this study. However, the implementation of bike lane is complex decision intertwined 

with multi-aspects concerns, for example, the traffic safety. The passing maneuver between bikes 

and cars posed a high risk to the cyclists, which can be moderated by setting up a dedicated bike lane 

as well. The proposed car-bike mixed traffic flow model could also provide a tool to measure the 

traffic safety impact of dedicated bike lane. For example, when there is no bike lane, the car and bike 

shared the same road; the associated passing times, relative speed, time length of each passing 

maneuvers, time length of cars queue behind a bike, etc., can be derived from the proposed model, 

which can be valuable variables to analysis the crash risk. 

4.3 SUMMARY 

This study proposed a car-bike mixed traffic flow model based on the Lax-Hopf equations. The car 

is not allowed to pass a bike when there is not enough space in the opposing lane provided by the 

opposing traffic stream and hence a bike generates a series of moving bottlenecks to following cars 

as it encounters cars from the opposing direction. Such bottlenecks are modeled as internal conditions 

in the Lax-Hopf equations. The total delay of the mixed traffic flow is calculated and some of the 

critical traffic criteria are derived. The results suggest that in order to borrow the opposing lane to 

pass a bike, the traffic flow in the opposing direction needs to be less than 300	𝑣𝑒ℎ/ℎ. Numerical 

tests reveal that as the difference between car and bike speeds gets smaller, lower opposing traffic 

flow is required to avoid significant congestion. The total delay, in general, is expected to increase 

as the speed difference between car and bike increases or car flow and bike flow increase. However, 

the interaction among bottlenecks can either increase or decrease the total delay, due to multiple 

interacting queues, or starving downstream bottlenecks of flow, respectively. Further, the impact of 

interaction among bottlenecks is significant to the total delay in a homogenous traffic flow but will 
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be diminished when variations are added to the traffic system, such as non-homogeneous bike 

headway, varying bike speed, and non-homogeneous opposing car spacing. Numerical results suggest 

that when bike headway variation is large, the results converge to the analytical calculation, while 

large bike speed variation or opposing car spacing variation leads to a total delay slightly higher than 

the analytical total delay. This study also examined the application domain of dedication bike lane to 

achieve minimum total person delay. The results suggests that it bike lanes can reduce overall delay 

when bike flow and car flow increase, the opposing traffic flow is high, or the spacing variation of 

opposing traffic flow is high. These conclusions can help traffic operators determine how to utilize 

the available space when both cars and bikes operate in the same space. 

In this study, only one directional bikes are considered. The two-directional bike flow and the impact 

of intersection signal control on the mixed traffic flow will be studied in future work.  
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5 CONCLUSIONS 

This study first examined the correlation between shared bike modes and public transit based on the 

trip datasets where the results of the individual characteristics analysis indicated that e-scooters are 

more likely to be used for leisure trips than public transit and shared bikes based on the temporal 

distribution of usage and the ratio of the morning peak to the afternoon peak trips. The Transit-GWR 

model showed that, while e-scooter and shared bike usage is highly positive correlated with each 

other, e-scooters tend to complement public transit, particularly in the west areas, the shared bikes 

are more likely to complement public transit and promote it in the east of the city. These differences 

suggest that shared bike and shared e-scooter have different roles in relation to public transit 

considering the built environment and the demographics. It can be concluded from the results that 

implementing a single mode strategically could help improve access to public transit, but when two 

of the micromobility modes co-exist, residents could have a preference for one over the other based 

on the specific regional environment. Since shared bikes and e-scooters attract users with different 

travel purposes, the implementation of these modes to complement public transportation can be 

chosen based on land use, demographic, and terrain characteristics in different areas.  

This study then explored the potential impact of shared bike trips on traffic safety by developing a 

series of crash frequency models. Comparison of the models with different kernel functions indicated 

that the Hoerl function can improve the performance of the crash prediction model, and the POIs that 

are related to necessary trips are more tightly related to the crash frequency of all modes compared 

to using all POI trips. Spatial variation in the relationship was not observed in crashes involving 

cyclists; however, such variation was observed in crashes involving pedestrians and motorists. The 

model results indicate that an increase in shared bikes can increase the crash risk of cyclists and 

pedestrians but does not influence motorist crash risk. Other variables that are related to crash risk 

include the density of the roadway network, which reduces cyclist crash risk; the number of 

intersections, which increases crash risk for all modes; and younger population and lower family 
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income, which increases crash risk.  

Finally, this study proposed a mixed car-bike traffic flow model based on the Lax-Hopf equations. 

The results suggest that in order to borrow the opposing lane to pass a bike, the traffic flow in the 

opposing direction needs to be less than 300	𝑣𝑒ℎ/ℎ. As the difference between car and bike speeds 

gets smaller, lower opposing traffic flow is required to avoid significant congestion. The total delay, 

in general, is expected to increase as the speed difference between car and bike increases or car flow 

and bike flow increase. However, the interaction among bottlenecks can either increase or decrease 

the total delay, due to the multi-times queue or invalidating some of the blocks downstream, 

respectively. Further, the impact of interaction among bottlenecks is significant to the total delay in 

a homogenous traffic flow but will be diminished when variations are added to the traffic system, 

such as non-homogeneous bike headway, varying bike speed, and non-homogeneous opposing car 

spacing. This study also examined the application domain of dedication bike lane to achieve the 

minimum total delay. The results suggests that it is much recommended to set a bike lane when the 

car speed reduction caused by separating a bike lane from the main road is small, the opposing traffic 

flow is high, or the spacing variation of opposing traffic flow is high. 

5.1 ENGINEERING SIGNIFICANCE 

This research aims to enhance the understanding of the performance of micromobility and help design 

a multi-modal transportation system in a more cooperative, safer, and efficient manner. The 

conclusions from the comparison among micromobility modes and public transit clarify the 

similarities and differences of shared bike, shared e-scooter and public transit, so that the role of each 

in the multi-modal transportation system can be defined. Based on the trip characteristics of each 

traffic mode, shared micromobility can be designed to complement the public transit system and 

improve connectivity and accessibility of the public transit network. More complementary effects 

can be achieved by distributing the shared micromobility system to the most demanding time period 
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and spatial area. This also provides a guide for cities that operate or plan to operate more than one 

type of micromobility mode in the same area. The traffic safety modeling research helps understand 

the safety impacts of bike trips in big cities to reveal factors that most tightly correlate to different 

types of crash frequency. The safety cost of implementing shared micromobility systems thus can be 

quantified and by modeling the influences of different factors on each type of crash frequency specific 

operating regulations can be designed to reduce the crash possibility, such as separating the bicycle 

flow from the motorized traffic flow. The proposed model for mixed car-bike traffic flow helps to 

reveal the domains of application of dedicated bike lanes to achieve a system-wide efficiency that 

considers both bike and motorized vehicle traffic. This can help achieve a better multi-modal 

transportation system and minimize the average delay per person.  

5.2 LIMITATIONS 

While the goal of this thesis is to develop a comprehensive understanding of shared micromobility in 

a multi-modal transportation system, several limitations still exist.  For the traffic demand analysis, 

the actual trip purposes of the users of different modes were unknow. A trip purpose survey in the 

future could help to examine the relationship between micromobility usage and geographical 

information to derive more detailed reasons for the different correlation distributions. Even though a 

large dataset was assembled to analyze the impacts of micromobility on traffic safety, not all factors 

that contribute to crashes were captured. Mainly, the motorist volumes were missing from the models 

which likely contributed to the lower predictive accuracy of the models. The model performance 

could be further improved with novel datasets once available in the future. While the car-bike mixed 

traffic flow is simplified in this study to draw basic conclusions, some improvements that make the 

model more realistic can be made in the future, such as considering two-directional bike flow and the 

impact of intersection signal control on the mixed traffic flow. These models can further be validated 

using empirical data.  
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