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Abstract: Models of bridge deck deterioration with improved predictive power can provide bridge management strategies that will optimize
allocation of the available, typically limited, budget of transportation agencies in a more efficient manner. In turn, this will lead to improvement
in the overall condition of bridges. To this end, this study developed a novel statistical hazard model of bridge deck deterioration using a gen-
eralized gamma accelerated failure time model with bridge deck attributes as covariates. Bayesian inference was used to estimate the parameters
of the model and will update these parameters as new inspection data become available. The Markov chain Monte Carlo sampling method was
used to estimate the posterior distribution of parameters utilizing both uncensored and censored inspection data. The proposed approach was
applied to approximately 30 years of in-service performance data inspected from 1985 to 2015 for more than 22,000 bridges in the state of
Pennsylvania. The results showed that the model based on the generalized gamma distribution had a high accuracy. Further, the reliability of
different attribute values of the physical makeup of the main span of the structure, the main span interaction type, and the rebar coating are quan-
tified based on themodel results. The proposedmodel can help improve predictions of future bridge deck conditions and provide decision-making
tools for infrastructure management. DOI: 10.1061/(ASCE)BE.1943-5592.0001842. © 2022 American Society of Civil Engineers.

Author keywords: Bridge deck deterioration; Survival probability; Generalized gamma distribution model; Bayesian updating;
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Introduction

Bridge deck safety is critical to the safety and well-being of the pub-
lic; however, bridge decks continuously deteriorate over their life-
time. This process is influenced by various factors, such as the
attributes of the bridge deck, the surrounding environment, and the
truck traffic. Pennsylvania has more than 25,000 state-owned bridges,
and in 2018, PennDOT spent 18.3% of its revenue on the Highway&
Bridge Maintenance program, with 29.9% of that being spent only on
the improvement of bridge decks (PennDOT 2019). PennDOT per-
forms about 18,000 bridge safety inspections every year, and each
bridge is inspected approximately every 2 years and assigned a con-
dition rating (CR) for the bridge deck, superstructure, substructure,
culvert, and overall condition. This inspection data set can be used
to explore significant attributes that influence the deterioration pro-
cess and develop decision-making tools for bridge deck maintenance
and rehabilitation planning.

Literature Review

Stochastic Deterioration Models

Many infrastructure deteriorations models have been proposed in
the existing literature and generally can be split into two categories:
deterministic and probabilistic methods (O’Leary et al. 2012;
Zhang and Durango-Cohen 2014; de Melo e Silva et al. 2000).
While deterministic methods are simple and intuitive, their accu-
racy highly depends on the adequacy and comprehensiveness of
the data. Extrapolating results from deterministic models can lead
to incorrect results (de Melo e Silva et al. 2000; Black et al.
2005). On the other hand, probabilistic methods are more realistic
for prediction of asset deterioration, which are probabilistic, not de-
terministic, in nature. Markovian chain Monte Carlo (MCMC)
modeling is the most commonly used stochastic approach. Markov
models can closely capture the uncertainty in the infrastructure de-
terioration process, but the assumption that the time spent in the
current condition state does not affect the probability of moving
to the next state, named the memoryless property, is a typical con-
cern (Butt 1991; Mishalani and Madanat 2002). Therefore, the
semi-Markov process that allows the transition probability to be de-
pendent on the time spent in any given state has been more widely
used for infrastructure deterioration modeling over the last two de-
cades (Agrawal et al. 2010; Sobanjo 2011; Thomas and Sobanjo
2013; Manafpour et al. 2018). Howard (2007) presented the prob-
ability that a continuous-time semi-Markov process will be in state
j at time t given that it entered state i at time zero, ϕij(t), as

ϕij(t) = δijwi(t) +
∑N
k=1

∫t
0
Hik(τ)ϕkj(t − τ)dτ i,

j = 1, 2, . . . , N ; t = 0, 1, 2, . . . (1)

where δij = Kronecker delta (i.e., δij= 1 if i= j and δij= 0
otherwise); wi(t) = probability that the process will leave its starting
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state i at a time greater than t; N = number of all possible states; and
Hik = probability of transitioning from state i to k at time τ, also
known as the semi-Markov kernel or the hazard function. The haz-
ard function, Hik(τ), reflects the reliability of the infrastructure and
can take any bathtub-shape distribution. For example, when the ex-
ponential distribution is chosen for the hazard model, the semi-
Markov process reduces to a traditional Markov process. Sobanjo
(2011) suggested that the choice of Hik(τ) is crucial to the process
of accurate modeling of the sojourn times.

Distributions of Hazard Function Used for Reliability
Modeling

Different statistical distributions for the hazard, such as exponen-
tial, gamma, and Weibull, have been used in the field of reliability
(Kobayashi et al. 2010; Tabatabai et al. 2011; Barone and
Frangopol 2014; Nasrollahi and Washer 2015). Weibull distribu-
tion is most commonly used in the literature to fit the distribution
of bridge or pavement deterioration. Sobanjo et al. (2010) com-
pared Weibull, lognormal, and exponential distribution when mod-
eling a bridge superstructure’s deterioration process and found that
the Weibull distribution achieved the best performance measured
by the Anderson–Darling test.

However, it is difficult to model real data with these more lim-
ited distributions since the data do not necessarily fit the shape of
these distributions (Agarwal and Kalla 1996). Thus, the generalized
gamma distribution (GGD) was introduced into reliability theory to
extend the useful scope of the ordinary gamma and Weibull distri-
butions and to allow modeling of more flexible distribution shapes
(Agarwal and Kalla 1996). The GGD distribution was first de-
scribed in 1965 (Stacy and Mihram 1965; Cohen and Whitten
2020) and can be reduced to nearly all of the most commonly
used distributions, including the exponential, Weibull, log normal,
and gamma distributions (Hirose 2000). More importantly, it can
model all four of the most common types of hazard functions:
monotonically increasing and decreasing, as well as bathtub and
arc-shaped hazards (Stacy and Mihram 1965; Cox et al. 2007; de
Pascoa et al. 2011). However, this increased flexibility requires
that more parameters be estimated, which in turn makes the estima-
tion process more complex (Kleiber and Kotz 2003). Several ap-
proaches have been proposed to estimate these parameters, such
as maximum likelihood estimation (Hirose 2000; de Pascoa et al.
2011), method of moments (Kleiber and Kotz 2003), heuristic
methods (Gomes et al. 2008), or Bayesian inference (Bayes and
Branco 2007; de Pascoa et al. 2011; Yang et al. 2018).

Bayesian Updating and MCMC Methods

Bayesian inference can achieve an accuracy equivalent to maximum
likelihood estimation but can also provide the intervals for the param-
eter estimates that can allow for risk analysis or updating of param-
eters as new data become available. Enright and Frangopol (1999)
considered combining a data-driven model based on the lognormal
distribution with expert knowledge using Bayesian updating.
Taflanidis and Gidaris (2013) implemented Bayesian updating for
bridge deterioration assuming the data follow a Gaussian distribu-
tion. Beck and Au (2002), Hsein Juang et al. (2013), and Straub
and Papaioannou (2015) developed a Bayesian updating approach
for structural reliability modeling and implemented the MCMC algo-
rithm to estimate the parameters considering Gaussian, lognormal,
and beta distributions. Bayesian updating is efficient, but the accu-
racy of the predictive models depends highly on the assumed distri-
bution. The flexibility of GGD to fit the data, combined with the
Bayesian estimation, can allow for this method to provide accurate

estimations for deterioration modeling. While this powerful distribu-
tion has been applied in the medical science and material fatigue
fields (Agarwal and Kalla 1996; Manning et al. 2002), it has not
been utilized in the infrastructure deterioration process, especially
when considering covariates.

Covariate’s Analysis

These distribution-based reliability models have aimed at determin-
ing the sojourn time; however, in practice, the bridge deck-
deterioration process is influenced by various covariates, such as
the structure of the bridge, the overlay material, and the rebar
type. To incorporate the impacts of covariates in deterioration mod-
els, different approaches have been used in the literature. Some re-
searchers have built predictive models for bridges grouped into
several categories based on different attributes, which increased
the complexity of the model and ignored the dependency between
different attributes (Sobanjo et al. 2010). A more common way to
incorporate the covariates into one model has been the proportional
hazards (Cox et al. 2007; Zhu et al. 2015) or accelerated failure
time models (Wei 1992; Tabatabai et al. 2011; Manafpour et al.
2018). These approaches either scale the hazard by a function of
the covariates or assume that a parametric regression model is
used for the reliability analysis. The latter approach has an intuitive
physical interpretation and is also simple to apply for commonly
used reliability distributions.

Research Objectives

To extend the existing distribution-based deterioration models that
incorporate covariates, this study adopted the generalized gamma
distribution to the bridge deck reliability analysis considering the
impact of covariates for a given CR. An accelerated failure time
(AFT) generalized gamma distribution (GGD)-based deterioration
model was proposed that can incorporate the impacts of significant
attributes that influence the bridge deck deterioration. A corre-
sponding Bayesian inference approach was suggested to estimate
the parameters and their possible ranges. An application of these
ranges was shown for updating the models as new inspection data
become available; however, these ranges are also useful when deter-
mining asset management strategies considering different risk levels.
This approach was demonstrated using 30 years of in-service perfor-
mance data for more than 22,000 bridges in Pennsylvania. The
remainder of the paper is organized as follows: the section “Method-
ology” introduces the AFT–GGD model along with the Bayesian in-
ference algorithm, followed by the section “Data Description”,
which discusses the Pennsylvania-based real-life data, and the
“Results” section shows the results of the model estimation. Finally,
concluding remarks are presented in “Conclusions”.

Methodology

The goal of this paper is to conduct a survival analysis of the dura-
tion that a bridge deck spends in a given CR to better account for
the variability in the inspection data. For these models, the time a
bridge deck lasts in each CR or cumulative truck traffic in a
given CR was considered as the independent variable. These vari-
ables were modeled assuming they follow a generalized gamma
distribution using an accelerated failure time approach to incorpo-
rate the covariates. The parameters of this model were estimated
using MCMC methods based on Bayesian theory that can provide
ranges of confidence for the results, and can update the parameters

© ASCE 04022006-2 J. Bridge Eng.
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as new data become available, without re-estimating the entire
model. A flowchart of the methodology can be seen in Fig. 1.
The main steps of the methodology are discussed next.

Accelerated Failure Time, Generalized Gamma
Distribution Model

Survival analysis aims at modeling the sojourn time, defined as the
duration of time or traffic load until an event, or failure, happens.
The specific dependent variable being modeled in a survival analysis
is known as the “hazard,” which is defined as the probability of fail-
ure at a given time conditional on the fact that failure has not hap-
pened until that time. The hazard rate functionH(t) can be defined as

H(t) =
f (t)

R(t)
(2)

where f (t) = probability density function of the sojourn time
defined as the probability that an event lasts at least until
time t; and R(t) = reliability (or the survival) function of the so-
journ time.

Accelerated failure time models assume that the covariates accel-
erate or decelerate the failure time. In this study, accelerated failure
time models were chosen due to their flexibility. The general form of
an accelerated failure time model assumes that the logarithm of the
failure time can be expressed as a linear function of covariates as

log (t) = βx + ε (3)

where x= [1, x1, x2, …, xk] = vector of covariates; β= [β0, β1, β2,
…, βk] = vector of the coefficients of covariates; k = number of
covariates; β0 = constant term; and ɛ = random error term with a
given probability distribution function. The covariates were
assumed to be independent of each other since they represent dif-
ferent attributes of bridge decks that are typically chosen indepen-
dently in practice. This assumption was further checked and found
to be appropriate by considering the correlation between the poste-
rior distribution of the coefficients (see the “Results” section).

The distribution of the random error determines the resulting
shape of the hazard and reliability function. In this paper, the
error term was assumed to follow the GGD. The steps to modify
the AFT methodology to represent a GGD are described in the Ap-
pendix. Following this methodology, the PDF of the AFT–GGD
can be written as

f (t, x|σ, λ, β) = |λ|
σt

1

Γ
1

λ2

( ) e

λ
ln(t) − e βx

σ
+ ln

1

λ2

( )
− e

λ
ln(t) − e βx

σ

λ2

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

λ ≠ 0

1

tσ
���
2π

√ e
−
1

2

ln(t) − e βx

σ

( )2

λ = 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where σ, λ, and β = parameters of the AFT–GGD model.

Estimating the Parameters

There are several approaches to estimate the parameters of the
model, σ, λ, and β, including maximum likelihood estimation
(MLE) and Bayesian inference. As discussed in the Introduction
section, Bayesian inference can achieve an equivalent accuracy
as MLE while providing more detailed estimation results, including
confidence intervals. Further, this estimation approach can allow
the model to be updated when new data become available, without
re-estimation of the whole model. Thus, a parameter estimation ap-
proach based on Bayesian inference was designed in this study to
estimate the parameters of the model. The process of Bayesian in-
ference can be described as

fX (σ, λ, β|D) = k × fX (σ, λ, β) × L(D|σ, λ, β)

∝fX (σ, λ, β) × L(D|σ, λ, β) (5)

where fX (σ, λ, β|D) = probability density function (PDF) of pos-
terior distribution of the parameters after observing data D; fX (σ, λ,
β) = PDF of the prior distribution of the parameters, and when prior
information is not available, it is the joint distribution of σ, λ, and β
determined based on prior knowledge or engineering judgement;
L(D|σ, λ, β) = likelihood function that data D is observed given
σ, λ, and β; and k = normalizing constant.

The likelihood function was composed of two parts, depending
on the type of available data: (1) the likelihood function of the un-
censored data, that is, data where the observation period covers
both the beginning and the end of a condition rating, which can
be calculated as the probability density function; and (2) the likeli-
hood function of censored data that is, either the beginning or the
end of a condition or both is not observed and can be calculated
using the reliability function. Thus, the final likelihood function

Fig. 1. Flow chart of the methodology.
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of the whole data set could be expressed as a product of the prob-
ability density functions of the uncensored data and the reliability
functions of the censored data as

L(D|σ, λ, β) =
∏
ti∈Du

f (ti|σ, λ, β)
∏
ti∈Dc

R(ti|σ, λ, β) (6)

where Du = data set of all uncensored data; Dc = data set of all cen-
sored data; f = probability density function; and R = reliability
function.

When there was no prior information, the prior distribution was
determined as the joint distribution of σ, λ, and β, which was as-
sumed to follow uniform distribution in this study, as

σ ∼ U (aσ , b σ), λ ∼ U (aλ, bλ), βi ∼ U (aβi , bβi ) (7)

where βi = elements of β; and a*, b* = hyper-parameters of the
prior distribution, which can be initialized based on experience.
Thus, the PDF of prior distribution when there was no prior infor-
mation was calculated as

fX (σ, λ, β) =
1

bσ − aσ
×

1

bλ − aλ
×
∏
i

1

bβi − aβi
(8)

When a model already exists, the posterior distribution calcu-
lated using the previously available data, fX(σ, λ, β|D), became
the prior distribution for the new model, fX(σ, λ, β).

MCMC Sampling
An analytical expression for the posterior distribution function [Eq.
(4)] does not exist. The MLE for GGD, especially when modified
by an AFT approach to incorporate covariates, is complex. Hence,
the distribution of the parameters σ, λ, and β must be estimated
using a heuristic algorithm or sampling approach. Here, a standard
Metropolis–Hasting MCMC (MH–MCMC) method was used. The
MCMC method provides more flexibility and additional useful in-
formation than the MLE and Kaplan–Meier (K–M) method. First,
the MCMC generates samples form the entire posterior, and there-
fore provides more accurate and reliable estimations than the MLE
and K–M estimator. These samples can be used for updating the
parameters as prior distribution samples directly. This is helpful
especially when the type of posterior distribution is not normal dis-
tribution and is hard to fit to a known distribution.

In the MH–MCMC sampling process, an initial sample consist-
ing of σ, λ, and β was generated using Eq. (7). Further, this set of
parameters was used to determine the corresponding likelihood and
posterior probability, fX (σ, λ, β), using Eqs. (6) and (5), respec-
tively. Next, a second sample, (σ′, λ′, β′), was generated around
the initial sample with a normally distributed transition probability,
p(σ′, λ′, β′|σ, λ, β), known as “proposal distribution,” and again the
posterior probability was calculated. Then, the transition probabil-
ity from (σ ′, λ′, β′) back to (σ, λ, β) was calculated with the pro-
posal distribution as p(σ, λ, β|σ′, λ′, β′). Finally, the MH–MCMC
method determines whether to accept this new sample or to con-
tinue with the initial sample. The new sample is accepted with
probability, α, as

α =min 1,
fX (σ′, λ′, β′)p(σ, λ, β|σ′, λ′, β′)
fX (σ, λ, β)p(σ′, λ′, β′|σ, λ, β)

( )
(9)

This acceptance ratio was chosen to ensure that samples with
higher PDF values of posterior distribution were more likely to
be accepted, thus allowing the samples to cluster around the opti-
mal point. A Markov chain was thus generated by repeatedly draw-
ing samples around the optimal point.

Addressing Computational Issues

There are some computational limitations to estimating the previ-
ously described model specifically for large data sets. Three
major concerns are: (1) the likelihood function approaches zero
as the likelihood for more data is considered, (2) the likelihood
function is mostly flat around the optimal solution, and (3) the
AFT–GGD approaches infinity when λ, μ are small. The modifica-
tions to the model to address these issues are discussed next.

Likelihood Function
As the number of available data increases, the likelihood value goes
to 0 and the log-likelihood value to negative infinity. This results in
the MCMC method failing to converge. See, for example, Fig. 2,
which shows the likelihood distribution as a function of μ and λ
while keeping σ constant for an illustration of this problem.

From Fig. 2(a), it can be observed that: (1) when λ or μ de-
creases, the likelihood function approaches negative infinity, and
(2) the likelihood function is flat around the optimal solution
(shown by the circle as estimated by maximum likelihood

(a) (b)

Fig. 2. Likelihood distribution of the generalized gamma distribution: (a) before likelihood transformation; and (b) after likelihood transformation.
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estimation). When λ and μ approach zero, the computational effort
becomes too large to determine the likelihood distribution. Since
the optimal parameters should yield a computable log-likelihood
value, the optimal solution would not be located in this region.
The parameter combinations around the optimal solution are calcu-
latable and remain stable. Both of these issues hinder the ability of
the MCMC method to converge. Hence, the likelihood function
was transformed into a logarithmic space as

Log L =
∑
tu∈Du

log( f (tu)) +
∑
tc∈Dc

log ( f (tc)) (10)

Next, the maximum log-likelihood value for all parameters was
calculated and subtracted from the log-likelihood value. Finally, the
following likelihood function was used in theMCMC calculations as

L = exp Log L − max
∀μ,σ,λ

(Log L)

( )
(11)

Gamma Function
In the PDF function of the GGD shown in Eq. (4), when λ ap-
proaches 0, 1/λ2 starts approaching infinity, and the gamma func-
tion may overflow. Tests had shown that when λ is less than
0.05, the gamma function will overflow in any common program-
ming language (i.e., Python, MATLAB).

To overcome this overflow problem, the function shown in
Eq. (4) was transformed. First, the gamma function can be calcu-
lated as

Γ
1

λ2

( )
= elog Γ 1

λ2

( )( )
= e

∑k
i=1

log 1
λ2
−i

( )
+log Γ 1

λ2
−k

( )( )
(12)

Using Eq. (12) and substituting it in Eq. (4), the PDF can be trans-
formed as (when λ≠ 0):

f =
|λ|
σt

e

λ
ln(t) − e βx

σ
+ ln

1

λ2

( )
− e

λ
ln(t) − e βx

σ

λ2
−
∑k
i=1

log
1

λ2
− i

( )
+ log Γ

1

λ2
− k

( )( )
⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦ (13)

The new plot of the likelihood function after this transformation
is shown in Fig. 2(b). With this transformation, nonoptimal solu-
tions had a likelihood value close to zero, including the areas that
approached negative infinity in Fig. 2(a). Conversely, the optimal
solution had a likelihood value that was distinctly higher than the
surrounding values, while keeping the same optimal solution.
Hence, through these two modifications the computational effi-
ciency of the MCMC method was improved.

Data Description

The data set analyzed in this work consists of biannual inspections of
bridges across Pennsylvania obtained from PennDOT. Historical
bridge deck CR, along with attributes of the bridge structure obtained
from the Bridge Management System (BMS2) (Pennsylvania 2009),
were accessed for more than 22,000 bridge decks constructed be-
tween 1840 and 2015. These bridges were inspected between 1985
to 2015. Table 1 summarizes the available attributes from BMS2.

The inspection data were first pre-processed and cleaned as follows:
• If a CR increased or decreased for only a single inspection and

returned to the previous CR in the next inspection, this data
point was corrected to match the before and after condition
rating.

• Data that did not have an inspection date were discarded.
• Data from bridges where a CR was not recorded for two consec-

utive inspections point were discarded (to eliminate possible er-
rors in CR reporting).

• If there were more than 1,500 days (4 years) between two con-
secutive inspections points and the CR changed between these
inspections, this data point was discarded (since the actual dete-
rioration time would be unknown).

• If the CR changed more than two levels (higher or lower) be-
tween inspections, this change was marked as “sharply in-
creased” or “sharply decreased,” respectively. These data were

treated as censored, and an indicator variable “EVENT” was in-
cluded for these data as 1, or otherwise 0. A sudden increase
could be due to a maintenance or reconstruction activity, and
a sudden decline could be due to an incident happening on
the bridge causing it to deteriorate quickly in a short time.
After cleaning the raw data, valid information for 18,354 brid-

ges was obtained, and a total of 44,086 sojourn times were ex-
tracted and classified given the CR. To choose a suitable model
to predict the life cycle performance of bridge decks, a nonparamet-
ric analysis of these sojourn times was first conducted. First, sum-
mary statistics for the distribution of the sojourn times were
determined, as listed in Table 2.

Looking at Table 2, it can be observed that only a small number
of bridges deteriorate to CR 3 or worse, as typically when a deck
enters CR 3, it is designated for maintenance repair, rehabilitation,
or replacement and/or CR 3 signifies nearing the end of the useful
service life. Due to the lack of data for CRs 3, 2, and 1, this paper
only utilizes data for bridge decks with a CR greater than 3.

Results

Considering the complexity of the full model and the limitation of the
data set, the performance of the proposed model was first evaluated
using a reduced model, which incorporates only one attribute, for ex-
ample, rebar type, as a covariate. The reduced model was used to: (1)
determine the appropriate dependent variable, (2) verify that the AFT–
GGDmodel can fit the data better than other commonly used distribu-
tions, and (3) verify the accuracy of the MCMC estimation compared
with maximum likelihood estimation. Next, a full model where all at-
tributes that were considered was estimated. The influence of different
attributes on the deterioration ratio were also analyzed. The applicabil-
ity of the Bayesian updating method was demonstrated, and the pa-
rameter sensitivity was analyzed using the full model.

© ASCE 04022006-5 J. Bridge Eng.
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The reduced model is only demonstrated for the deterioration
process from CR 6 to CR 5, however, similar conclusions are
drawn when considering deterioration from different condition rat-
ings. The full model considered all the deterioration process from
CR 9 to CR 4. In general, the MH–MCMC method was used to es-
timate the AFT–GGD model (unless specified otherwise) using
20,000 samples generated from the posterior distribution with a
burn-in of 1,000 samples (i.e., the initial 1,000 samples were
thrown away). The prior distribution was assumed to be uniform,
with lower and upper limits of −10 and 10, respectively. This

range was selected based on preliminary tests. The thinning was
set as 2 since no significant autocorrelation was observed, which
means that one sample was abandoned every two samples. After
discarding burn-in samples and thinning, all coefficient samples
of the MCMC followed a stable normal distribution for each attri-
bute (e.g., rebar type).

Reduced Model, Models with a Single Covariate

Choice of Dependent Variable
Two candidate-dependent variables for modeling are available:
(1) the time until the CR changes, that is, sojourn time; or (2) the
total vehicle loading until the CR changes. Since the equivalent
single-axle load of a car (which is directly related to the amount
of damage done to the pavement) is negligible (FHWA 2016), in
this paper, only truck traffic is used to represent traffic loading.
Hence, the total vehicle loading is represented using the cumulative
truck traffic (CTT), which was calculated by multiplying the time
until a change in the CR and the average daily truck traffic. Both
variables could predict deterioration of bridge decks; however, so-
journ time and CTT evaluate the duration of a bridge from different
perspectives. To evaluate the impact of different material type, how
the reliability (or survival probability) would change for different
bridge deck surface types was evaluated. The K–M estimator
(Kaplan and Meier 1958) was used to calculate the reliability func-
tions based on the uncensored and censored data. The

Table 2. Basic statistics of sojourn times of bridge decks

Censored Uncensored

Condition
rating Count

Mean
(days)

Std.
(days) Count

Mean
(days)

Std.
(days)

CR 1 19 2,809 2,509 2 1,040 348
CR 2 104 1,690 1,263 13 1,818 1,124
CR 3 1,007 2,022 1,709 170 2,034 1,421
CR 4 3,132 3,197 2,410 783 2,581 1,717
CR 5 6,016 4,010 2,759 2,317 2,935 1,794
CR 6 7,264 4,024 2,622 3,865 2,977 1,719
CR 7 8,636 3,957 2,603 3,817 3,054 1,760
CR 8 3,234 2,610 1,927 2,612 2,501 1,443
CR 9 654 1,420 1,106 381 1,747 1,049
Total 30,066 13,960

Table 1. Attributes description and values distribution

Discrete attributes Description Values (count)*

DISTRICT District number District 1 (2,707); District 2 (2,102); District 3
(3,171); District 4 (2,200); District 5 (2,215);
District 6 (2,912); District 8 (5,369); District 9
(3,497); District 10 (2,443); District 11 (2,672);
District 12 (2,817);

DEPT_DKSTRUC_TYP Deck structure type Concrete, reinforced (26,324);
DEPT_MAIN_MATERIAL_TYPE Main materials type Steel (8,531); concrete (cast in place) (6,205);

concrete (precast) (537); prestressed precast concrete
(P/S) (15,774); concrete-encased steel (982);

DEPT_MAIN_PHYSICAL_TYPE Physical makeup of main span of structure Reinforced (6,744); pretensioned (15,600); rolled
sections (4,787); rolled sections with cover plates
(1,174); combination, rolled sections/cover plates
(334); other (3,313);

DEPT_MAIN_SPAN_INTERACTION Span interaction for main span of structure. Simple, noncomposite (12,042); simple, composite
(15,377); continuous, noncomposite (882);
continuous, composite (2,751); other (1,053);

DEPT_MAIN_STRUC_CONFIG Structural configuration for main span of structure. Slab (solid) (2,378); T beams (3,985); I beams
(11,653); box beam, single (5,681); box beam, adj
(6,614); I-welded beams (410); girder weld/deck
(722);

DK_PROTECT Deck protection type. none (18,171); epoxy-coated reinforcing (12,439);
galvanized reinforcing (461); unknown (804);

DECK_REBAR_TYPE Deck rebar type. bare rebar type (12,960); galvanized rebar type
(561); epoxy rebar type (11,738); unknown (6,794);

MAIN_SPANS Main bridge spans. (Number of spans in main unit.) 1 (20,209); 2 (4,954); 3 (4,167); 4 (1,416); 5 (585);
DKMEMBTYPE Waterproofing membrane on bridge main span. None (26,722); preformed fabric (3,816); other

(368).
DKSURF_TYPE Wearing surface types on bridge main span. Concrete (14,137); concrete overlay (3,406);

epoxy overlay (974); bituminous (13,340);
EVENT If special event happened. Sharply decrease (3,497); normal (22,332); sharply

increase (6,212)

Continuous variables Description Mean St. dev. Min Max

LENGTH Bridge length (ft). 132.91 260.95 18 13,915
DECK WIDTH Bridge deck width (ft). 35.56 603.83 11.50 187
ADTT Average daily truck traffic (truck). 369.05 10.37 1 3,000

*The Values (counts) only show the values whose count is larger than 1% of the whole data set.
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nonparametric reliability for duration, t, was calculated as

R̂(t) =
∏
i

ni − mi

ni
(14)

where ni = number of sojourn times that are greater than or equal to
time ti; andmi= number of sojourn times that are exactly equal to ti.

Consider the deck surface type as an example. Expert knowl-
edge would anticipate that bituminous overlays would be less
durable than concrete. This can be observed in the usage of these
materials: while 55.1% of bridges with ADTT less than
1,000 trucks/day used bituminous surface, 65.5% of bridges with
ADTT larger than 1,000 trucks/day used concrete. Next, the reli-
ability of bridge decks predicted from the data using the nonpara-
metric K–M estimate is determined considering: (a) the sojourn
time as the dependent variable, and (b) the CTT as the dependent var-
iable. The results are shown in Fig. 3. Looking at Fig. 3(a), concrete
deck surface types appear to deteriorate more quickly than others,
while all bridges with different surface types share a similar deteriora-
tion pattern if the sojourn time is used as the dependent variable. This
is a counterintuitive result. However, the reason for this observation is
that this dependent variable does not consider that bridge decks utiliz-
ing bituminous material also typically experience lower truck traffic
due to the selection bias in the overlay material. Hence, when

considering CTT as the dependent variable [Fig. 3(b)], the reliability
trends are more as expected: bituminous overlays have the lowest re-
liability and epoxy overlay has the highest reliability. Similar trends in
reliability for other attributes were also observed when comparing the
sojourn time with the CTT as the dependent variable. Hence, the CTT
was chosen as the dependent variable for this study.

Accuracy of the AFT–GGD Model
After the dependent variable was determined, the suitability of the
GGD to fit the deterioration pattern was tested and compared with
the other commonly used statistical models, for example, Weibull,
log-normal, log-logistic, and exponential.

First, the data set was divided into four parts based on the rebar
type, for example, bare rebar type, epoxy rebar type, galvanized
rebar type, and other rebar type. The survival probability curves
were estimated with the K–M estimator as ground truth and different
distributions were applied to fit the data. The K–M curve also in-
cludes a band of reliability that represents the robustness of the sur-
vival probability determined from the data. This curve is typically
wider when fewer data are available. Fig. 4 shows the fitting curves.

Fig. 4 shows that different rebar types have different deteriora-
tion patterns; hence, a flexible distribution can help accommodate
the different scenarios. Log-normal, log-logistic, and GGD
achieved better performance in general compared with Weibull
and exponential models, especially when the CTT was less than
5 million trucks. As the CTT increased, the differences between
the fitting curves also increased. The accuracy and performance
of the different distributions compared with the nonparametric
K–M estimation were quantified considering three metrics: mean
average error (MAE), root-mean square error (RMSE), and
log-likelihood. Table 3 lists the results.

Table 3 indicates that the other distributions never outperform
the GGD and often underperform. Hence, these results suggest
that the flexibility of the GGD leads to better accuracy in predicting
the deterioration of bridge decks.

Next, a single model that considers the rebar type as its only co-
variate was developed. The covariate was incorporated into the dif-
ferent distributions using the AFT approach and the general
performance of the different distributions was evaluated considering
the entire data set. Table 4 lists the results of the accuracy metrics.

As seen in Table 4, the AFT–GGD model achieved the lowest
MAE and highest log-likelihood compared with the other models.
Even though the RMSE of AFT–GGD was slightly lower than the
log-logistic model, the general performance of the AFT–GGD was
still the best. This confirmed that AFT–GGD model has a higher
predictive accuracy than other commonly used statistic models in
the literature.

Accuracy of the MCMC Methodology
The previous subsection showed that AFT–GGD can achieve better
accuracy than other distributions, especially when many covariates
exist. The estimation of this type of model is complicated due to the
complex structure of the GGD and the additional parameter that
must be estimated (Hirose 2000; Hwang and Huang 2002). There-
fore, the MCMC method was adopted in this study to estimate the
AFT–GGD model. The accuracy of MCMC was also evaluated
based on the reduced model where only a single covariate is con-
sidered for convenience and simplicity.

The model parameters were estimated using: (1) a maximum
likelihood estimation utilizing the Newton method (Abatzoglou
and Gheen 1998), which is one of the most commonly used param-
eter estimation method in the literature; and (2) MCMC. A histo-
gram plot for the samples of the coefficient for bare rebar type
(Fig. 5) shows that the samples follow a normal distribution. The

(a)

(b)

Fig. 3. Deterioration pattern with different dependent variables for
deck surface types: (a) sojourn time as dependent variable; and
(b) CTT as dependent variable.
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coefficient samples of other rebar types displayed a similar pattern,
which indicated the MCMC samples converged well.

Since the MCMCmethod provides a distribution for each param-
eter, the parameters were then estimated from this method using ei-
ther a maximum a posterior estimation (MAP) or simple mean. The
resulting estimates can be seen in Fig. 5 as the distribution of the pa-
rameter for the bare rebar, a normal distribution fitted to the param-
eter distribution, and the three point-estimates of the parameter.

From Fig. 5, it can be observed that the three different
point-estimates of the parameter are close. This indicates that the
MCMC method can closely predict the parameter values compared
with standard methods. The advantage of the MCMC method is
that, along with the point estimation, it provides a distribution for
the parameter, which can be used to determine bands of confidence
around predictions of parameters and is also useful for updating the

parameters as new data become available. Since the samples can be
closely fitted to a normal distribution, the MAP estimation and
mean of the sample should theoretically be identical. For the re-
mainder of the paper, the mean of the sample distribution is used
as the point estimate of each parameter.

Survival probability was determined using both the predictive model
and the K–Mestimation based solely on data shown in Fig. 6. In Fig. 6,
the K–M estimation and MLE were calculated using the lifelines pack-
age in Python (Davidson-Pilon et al. 2021), along with a 95% confi-
dence interval calculated using Greenwood’s formula shown as the
bounds in the figure (Cox and Oakes 1984). The MCMC method re-
sults are shown with a mean of samples estimation.

From Fig. 6, it can be seen that the predictive model had a high
accuracy and closely predicted the deterioration pattern of different
rebar types and was able to distinguish the influence of different

(a) (b)

(c) (d)

Fig. 4. Survival probability curve of different rebar types fitted to different distributions: (a) bare rebar type; (b) epoxy rebar type; (c) galvanized rebar
type; and (d) other rebar types.

Table 3. Evaluation indexes of different distributions

Sub-data set Criteria Weibull Exponential Log-normal Log-logistic Generalized gamma

Bare rebar MAE 0.04 0.18 0.02 0.02 0.02
RMSE 0.05 0.22 0.02 0.03 0.02

Log-likelihood −1,248.78 −1,889.37 −1,144.68 −1,184.81 −1,135.60

Epoxy rebar MAE 0.04 0.20 0.03 0.03 0.03
RMSE 0.05 0.23 0.03 0.03 0.03

Log-likelihood −1,668.63 −2,360.62 −1,590.24 −1,632.52 −1,586.27

Galvanized rebar MAE 0.05 0.22 0.05 0.05 0.05
RMSE 0.06 0.25 0.06 0.06 0.06

Log-likelihood −80.34 −116.97 −78.23 −80.81 −78.23

Other rebar type MAE 0.07 0.30 0.05 0.04 0.02
RMSE 0.08 0.35 0.05 0.04 0.02

Log-likelihood −344.19 −1,000.75 −245.46 −251.01 −180.79

Note: The best results of model comparison are given in bold.
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rebar types on deterioration. Note that the galvanized rebar type exhib-
its a larger confidence interval than do others, due to the small number
of observations in this category. A confusion matrix, which shows the

accuracy of predicting the sojourn time using different rebar type var-
iables, was calculated as listed in Table 5. This matrix shows the rel-
ative error of prediction of survival for a bridge with a given rebar type
using a model developed for another (or the same) rebar type. For ex-
ample, if the deterioration of a bridge deck with epoxy rebar was being
predicted, but the model for bare rebar was used, the relative error was
observed to be 0.33. It can be seen that the model had the largest ac-
curacy along the diagonal, which is when the correct rebar type from
the data was used to predict the survival probability of the data.

In addition to the accuracy of the model, the stability of the pa-
rameter estimation was also compared with a maximum likelihood
estimation. The distributions of the posterior samples of each pa-
rameter along with the quartiles were compared with the 95% con-
fidence interval from MLE, as shown in Fig. 7. From Fig. 7, it can
be found that the lower and upper quartiles are always within the
95% confidence intervals of MLE and achieved a tighter estimate
for the shape parameters, λ and σ.

Estimation of the Full Model

Next, six full models for CR 4 through CR 9 were estimated consid-
ering all attributes. To achieve this, all data were initially included in
the model and a backward elimination was performed. Finally, 41 at-
tributes were included for various CR ratings. Using these attributes,
20,000 samples of the MCMC were generated. All the samples of
each variable approximately followed a normal distribution and con-
centrated within a stable range. The samples’ distribution indicated
that those models converged well. Even though the posterior distribu-
tion represents the joint probability of the coefficient of each covari-
ate, in this study the coefficients were found to be independent. A
correlation coefficient matrix indicated that 91.25% of the pairs of co-
efficients had very low correlation coefficients between −0.2 and 0.2.
Only a few covariates were found to be correlated, which typically
were the coefficients of different realizations of the same attribute,

Table 4. Evaluation indexes of different AFT models on the whole data set

Models MAE RMSE Log-likelihood

AFT–Weibull model 0.0553 0.0707 −3359.3422
AFT–exponential model 0.2224 0.2674 −5,367.7140
AFT–log-normal model 0.0398 0.0524 −3,064.0266
AFT–log-logistic model 0.0392 0.0514 −3,153.5695
AFT–GGD model 0.0371 0.0518 −3,020.6304

Note: The best results of model comparison are given in bold.

Fig. 5. Comparison of estimation results of bare rebar type.

(a) (b)

(c) (d)

Fig. 6. Comparison of MCMC results with MLE results: (a) bare rebar type; (b) epoxy rebar type; (c) galvanized rebar type; and (d) other rebar types.
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such as different main structural configurations or different district
areas. Hence, covariates were treated independently, and the marginal
distributions were used to estimate the coefficients. The mean of the
coefficients estimated for each CR model are shown in the Appendix.

Notice that each discrete variables’ coefficient was estimated con-
sidering a baseline, for example, for the CR4 model the baseline for
the district variable was Districts 2 and 8. The baseline is selected as
the value of an attribute that would result in a deterioration pattern
most similar to the general deterioration pattern from the whole
data set. Hence, the baseline is usually chosen as the value of an at-
tribute that is most frequent in the data set. For example, for theDeck
Protection Type variable, 57.01% of the bridges (18,171 out of
31,872) are in the No protection category. Thus, the No protection
category is selected as the baselines for the accelerated failure
model for all CRs. The coefficient for each variable that is not chosen
as the baseline represents the ATF for that variable, that is, a positive
coefficient represents a decelerated timeline and thus associate with
higher reliability, and a negative coefficient represents an accelerated
timeline and thus associating with lower reliability.

Attribute Reliability Analysis
The results reveal that the influence of each attribute for different
condition ratings varied slightly, though the trends were consistent.

In addition, since all the attributes were incorporated into the model
as a binary variable (0 or 1), and the coefficient of a given attribute
represented the independent influence of this attribute, the model
can easily be used to understand the reliability of bridges consider-
ing multiple attributes by simply summing their coefficients. For
example, when a new bridge with an epoxy rebar type is con-
structed in District 2, and another with a bare rebar type is built
in District 5, the reliability of the two bridges can directly be com-
pared by adding the coefficients of the relevant rebar type and dis-
trict number from the model to obtain the reliability of each bridge.
This feature can be used to analyze the reliability of newly con-
structed bridges. Some detailed results and observations from Ap-
pendix I for the specific attributes are discussed further next.

The mean value of the parameters of the DISTRICT attribute for
each CR is plotted in Fig. 8(a), along with the error bars that
represent the standard deviations of those samples. Bridges from
different districts have different management strategies, environ-
mental conditions, budgets, and traffic conditions; hence, bridge
performance varied among districts. Bridges that had the highest re-
liability were in Districts 5 and 6, which are in eastern Pennsylva-
nia. This distinction is most likely due to economic development
and weather conditions in that location.

Fig. 8(b) shows the coefficients for different levels of the phys-
ical makeup of main span variable in the reliability models. In this
data set, 49.9% of all bridges had a pretensioned physical type,
which was often selected as the baseline, followed by 21.1% of
bridges having a reinforced concrete physical type. The results
show that reinforced physical type had a higher reliability than pre-
tensioned physical type for low CRs, but the pretensioned physical
type had the highest reliability for CR 9. These results are consis-
tent with empirical observations of the data, where the reliability of
pretensioned concrete is the highest initially, however, decreases
more rapidly than reinforced concrete as loading increases (Dai
et al. 2020). Further, the coefficients for rolled sections (with or
without cover plates) were generally negative, implying that the

Table 5. Confusion matrix of the predictive model

Relative error

Observation

Bare
rebar

Epoxy
rebar

Galvanized
rebar

Rebar
baseline

Prediction Bare rebar 0.15 0.46 0.33 0.48
Epoxy rebar 0.33 0.16 0.22 0.70
Galvanized
rebar

0.16 0.18 0.14 0.59

Rebar baseline 0.64 1.11 0.93 0.31

Note: Bold values are used to highlight the accuracy of the model.

Fig. 7. Stability comparison of MCMC approach.
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rolled sections may not have as high reliability as pretensioned
physical type in practice.

For the span Interaction for main span, the simple, composite
span interaction was the most used type and, hence, was selected
as the baseline. Fig. 8(c) shows that continuous span interactions
for the main span of the structure were generally stronger compared
with the simple, composite span intersection, and composite span
interactions often lead to higher reliability than noncomposite
span interactions for most CRs, that is, CR 4, CR 6, CR 7.

For the rebar type, bare rebar was chosen as the baseline since
most bridge decks were constructed using bare rebar. The results
of the coefficient estimations of rebar type suggest that epoxy
rebar had the highest reliability compared with other rebar types,
which is expected. Epoxy-coated rebar is used to resist corrosion, es-
pecially against exposure to deicing salts or marine environments,
and can provide acceptable protection compared with bare rebar.
Lab experiments have shown that epoxy-coated rebar can signifi-
cantly outperform bare rebar (McCrum and Arnold 1993). Con-
versely, the same lab experiments also suggested that the
galvanized rebar should also perform similar to epoxy-coated rebar
and outperform bare rebar types, since galvanizing is a corrosion pro-
tection method where the zinc and zinc alloy coating provides both

barrier and sacrificial protection to the steel. However, only 1.75% of
all bridges had galvanized rebar, leading to large confidence intervals
for the coefficient estimations [Fig. 8(d)].

Another interesting result was obtained for bridge decks that
experienced sharp declines or increases in condition ratings,
that is, a change of more than two condition ratings between
two consecutive inspections. The sudden increases could be due
to a maintenance or reconstruction activity, and the sudden de-
clines could be due to an incident happening on the bridge caus-
ing it to deteriorate quickly in a short time. Fig. 8(e) shows the
parameters for the baseline: only smooth transitions, sharply in-
crease, and sharply decrease. The model results showed that
after a bridge had been maintained, the performance would de-
cline compared with a bridge deck without any sudden changes
in condition rating. Further, it was observed that a sharp decrease
in condition rating has a larger impact on reliability as compared
with a sharp increase, which is most likely due to a controlled
maintenance activity.

Bayesian Results
As new inspection data become available, the old model will re-
quire updating. In this case, Bayesian theory can be utilized to

(a)

(b) (c)

(d) (e)

Fig. 8. Parameters of key attributes in each condition rating: (a) district; (b) physical makeup of the main span; (c) span interaction for the main span;
(d) rebar type; and (e) special events.
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update the parameters of the existing model. The CR 6 data set was
utilized to demonstrate the proposed method.

First, the data set was divided into two parts according to the in-
spection date of the bridges. The first data set consisted of all the
inspection data before 2000, and the second data set consisted of
all the inspection data between 2000 and 2015. Another test that
used the entire data set as one was also developed to compare
with the two-step updated results. The number of observations
that were available in each data set are given in Table 6.

First, Data set 1 was modeled as described in the Estimating
the Parameters section using a uniform distribution as the prior
distribution, and 20,000 samples are generated from the posterior
distribution using the MCMC method. A normal distribution was
used to fit these samples to obtain the posterior distribution (see

Step 1 histograms and fitted curves in Fig. 9). Next, the fitted nor-
mal distributions for each parameter were used as the prior distri-
bution for determining the posterior distribution using Data set
2. Again, 20,000 samples were generated from the posterior dis-
tribution, and a normal distribution was used to fit the samples
to obtain the posterior distribution (see Step 2 histograms and
fitted curves in Fig. 9). The results from the test using the entire
data set at once are also shown in Fig. 9 (see all data histograms
and fitted curves in Fig. 9) to compare the results from the updat-
ing process and direct calculation.

Fig. 9 only demonstrates four of all parameters as an illustration.
From Fig. 9, it can be observed that as more data became available,
the samples became more concentrated, and the interval estimation
also resulted in a narrower range. The predictive accuracy of the
updated model converged to the results that were estimated using
the entire data set. The correlation coefficient between the results
after two steps updating and the estimations using the entire data
set is 0.9876, which showed that the Bayesian updating method
can obtain reliable results. The Bayesian self-updating process pro-
vides more flexibility and efficiency to update the existing model
when new inspection data become available, rather than re-
estimating the model from scratch.

Table 6. Data set description

Data set Censored data Complete data Total

1985–2000 5,404 1,301 6,705
2000–2015 5,405 2,470 7,875
1985–2015 (entire data set) 7,264 3,827 11,091

(a) (b)

(c) (d)

Fig. 9. Bayesian updating results: (a) coefficient of rebar type; (b) coefficient of main physical; (c) coefficient of main structure configuration; and
(d) coefficient of distract.
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Conclusions

This paper advances the knowledge in infrastructure deterioration
modeling by considering a more powerful distribution, that is, the
generalized gamma distribution, which utilizes a Bayesian inference-
based parameter estimation approach. The proposed AFT–GGD
model has the flexibility to model different shapes of deterioration
curves and therefore was able to achieve a higher predictive accuracy
than were traditional statistical models, such as Weibull, log-normal,
log-logistic, and exponential distributions-based models. This was
shown using a reduced model that only considered rebar type as a
covariate, and the results suggested that the AFT–GGD model
had a log-likelihood of −3,020, whereas the commonly used
AFT–Weibull model had a log-likelihood of −3,359 on the same
data set. Other distributions were not able to adapt to the different de-
terioration patterns that were observed when considering different
rebar types. However, this flexibility comes at the cost of complexity
of estimating the model parameters. Therefore, a heuristic approach,
namely the MCMC sampling method, was adopted to estimate the
parameters, and several computational issues were addressed in
this study as well. The results suggest that the MCMC can achieve
a comparable accuracy with the MLE and obtain stable estimations
of the model parameters, since on a reduced model both the upper
and lower quartiles of the posterior samples are within the 95% confi-
dence interval of MLE. Further, the results of this paper suggest that
choosing the cumulative truck load (CTT) as the dependent variable in-
stead of a traditional solely time-based dependent variable can improve
the predictions of the impact of covariates on the deterioration process.
The CTTmodel emphasizes the impact of aging and traffic load simul-
taneously, and therefore the reliability analysis based on this dependent
variable is more consistent with engineering judgment. For example,
when using CTT as the dependent variable, the epoxy overlay had
the highest reliability followed by the concrete overly and the bitumi-
nous overlay. In an equivalent time-based model, this order was not
preserved. Similar predictive performance improvements were ob-
served for other attributes as well. The final model that includes all at-
tributes suggest that the district, physical makeup of main span, span
interaction of main span, and rebar type have significant impact on
the deterioration process of bridges in Pennsylvania.

Some limitations exist in this study and should be studied in the
future. The mathematical solution of the parameter estimates for the
AFT–GGD are difficult to calculate. Even though heuristic solu-
tions theoretically converge to the optimal solution, the accuracy
and efficiency of those solutions depend greatly on the chosen hy-
perparameters of the algorithm. Hence, further improvements can
be done to get parameter estimates with tighter confidence inter-
vals. Also, even though the Bayesian estimation can be used to
update the model when new data are available, this is purely data-
driven. Incorporation of expert knowledge into this updating pro-
cess should be studied further. In addition, the proposed models
could be used on different data sets to ensure that similar findings
hold when considering different databases.

Appendix I. Parameter Estimations of the Full Model

Attributes CR 4 CR 5 CR 6 CR 7 CR 8 CR 9

District
District 1 −0.172 −0.1381 −0.2728 −0.5901 −0.0894 0.0162
District 2 * −0.0997 * −0.7327 * 0.327
District 3 −0.4446 −0.4267 −0.1247 −0.4232 * −0.2198
District 4 0.7709 * 0.0649 −0.4061 0.506 −0.0398
District 5 1.0466 0.598 0.4514 * 1.1258 0.7528

(Continued.)

Attributes CR 4 CR 5 CR 6 CR 7 CR 8 CR 9

District 6 0.0359 0.9389 0.8934 0.641 1.2452 0.8245
District 8 * 0.1756 * * 0.5437 0.4424
District 9 −0.2991 * −0.3522 −0.6383 −0.2432 −0.5398
District 10 −0.4664 −0.4978 * −0.7578 −0.0016 −0.4088
District 11 0.3295 * 0.3404 0.2328 0.6338 *
District 12 0.1242 * −0.3278 −0.7794 0.338 *

Main materials type
Steel * * * * * −0.3919
Concrete (cast in
place)

0.2031 −0.2634 −0.267 0.678 0.3162 *

Concrete
(precast)

— −0.5625 −0.4967 0.4 −0.3127 —

Prestressed
precast concrete

* * * * −0.1634 −0.7049

Concrete encased
steel

0.1904 0.4508 0.1754 0.4344 0.1246 —

Physical makeup of main span of structure
Reinforced 0.4344 1.4082 0.9421 0.3849 0.3278 *
Pretensioned * * * * * 0.5282
Rolled sections −0.1781 * −0.2153 −0.1943 −0.0124 0.5223
Rolled sections
with cover plates

−0.6588 * −0.3695 −0.4118 −0.5 —

Combination,
rolled Sections,
or Cover plates

— 0.2895 −0.1294 −0.578 — —

Other 0.2566 * −0.1561 −0.1998 0.11 0.0811

Span interaction for main span of structure
Simple,
composite

* * * * * *

Simple,
noncomposite

−0.0664 −0.1583 −0.3387 −0.1015 −0.2207 −0.184

Continuous,
noncomposite

−0.3865 0.089 −0.1764 0.2442 0.4293 —

Continuous,
composite

0.1907 −0.0733 0.2347 0.3572 0.0206 −0.32

Other 0.1987 −0.2811 −0.243 −0.1141 −0.4062 —

Structural configuration for main span of structure
Slab (solid) −0.7481 −0.9218 −0.8948 −0.9919 −0.4654 0.1931
T beams −0.2448 −0.5426 −0.3899 −0.848 −0.247 0.8732
I beams * * * * 0.1833 *
Box beam, single −0.2722 −0.2242 −0.4843 −0.5586 * 0.2272
Box beam, adj −0.4231 −0.485 −0.6576 −0.6051 −0.3807 −0.2772
I-welded beams — −1.1168 −0.538 −0.7838 −0.2569 -
Girder weld/deck −0.5607 0.1753 0.2236 −0.0005 * -

Deck protection type
No * * * * * *
Epoxy-coated
reinforcing

* * * 0.4535 0.4208 0.2034

Galvanized
reinforcing

— −0.0321 * 0.8791 0.6218 -

Deck rebar type
Bare rebar * * * * * *
Epoxy rebar 0.464 0.4066 0.3161 * 0.0724 0.5141
Galvanized rebar — 0.2146 −0.0435 −0.6243 −0.233 -
Others −0.311 — −0.2592 −0.3624 −0.1209 −0.1343

Main bridge spans (number of spans in main unit)
1 * * 0.1717 0.2323 * *
2 −0.0423 −0.2493 * * −0.1913 0.2646
3 0.9023 0.7065 0.9246 0.7042 0.4596 0.8411
4 0.1244 −0.2311 * 0.1665 0.1174 −0.0462
5 1.224 0.3203 0.295 * 0.0645 —
6 — — 0.0878 −0.2673 — —

Waterproofing membrane on bridge main span
No * * * * * *
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(Continued.)

Attributes CR 4 CR 5 CR 6 CR 7 CR 8 CR 9

Preformed fabric 0.0913 0.558 * 0.2054 0.406 0.5369
Epoxy — — — −0.0879 — —
Other — −0.3782 −0.7985 −0.8029 — —

Wearing surface types on bridge main span
Concrete * * * * * *
Concrete overlay 0.462 0.6124 0.6774 0.5288 0.6413 0.5869
Epoxy overlay 0.7728 0.9731 0.7558 0.8091 1.0521 —
Bituminous 0.4119 * 0.4016 0.4239 0.4598 0.5825

Special events
Sharply decrease −0.9948 −0.8328 −0.4298 −0.403 −0.6643 *
Nothing
happened

* * * * 0.5094 2.803

Sharply increase * −0.293 −0.2683 −0.4494 * *

Length 0.1736 0.3423 0.3293 0.4505 0.1212 0.653
Deck width 10.2289 9.5222 8.4817 10.4584 10.5333 11.322
Ln (Sigma) 0.4118 0.4726 0.4288 0.4351 0.3678 0.4232
Lambda 0.6226 0.3328 0.4375 0.4071 0.3318 0.2827
Beta_0 −3.6452 −4.2849 −3.9917 −4.4316 −6.2533 −7.4602

“*” implies the baseline for each model; “—” implies that not enough data
were available to include in the model (denotes less than 500).

Appendix II. Derivation of AFT–GGD Model

The probability density function (PDF) of a standard GGD is
shown as

f (t) =
β

Γ(k)θ
t

θ

( )kθ−1
e−

t
θ

( )β
(15)

where k, β, θ = parameters of the distribution; t = independent var-
iable; Γ(k) = gamma function as shown in

Γ(k) =
∫∞
0
sk−1e−sds (16)

The standard GGD is simple, however the parameters cannot be
easily estimated. Hence, this was reparametrized according to Law-
less (Lawless 2011), using new parameters μ, σ, λ as

μ = ln(θ) +
1

β
ln

1

λ2

( )
(17)

σ =
1

β
��
k

√ (18)

λ =
1��
k

√ (19)

Hence, the updated PDF of the generalized gamma distribution
with the new parameters is

f (t) =
|λ|
σt

1

Γ
1

λ2

( ) e

λ
ln(t) − μ

σ
+ ln

1

λ2

( )
− e

λ
ln(t) − μ

σ

λ2

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

λ ≠ 0

1

tσ
���
2π

√ e
−
1

2

ln(t) − μ

σ

( )2

λ = 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

Then, the reliability function can be determined as

R(t) = 1 −
∫t
0
f (x)dx =

1 − ΓI
1

λ2
;
e
λ
ln(t) − μ

σ

λ2

⎛
⎜⎜⎝

⎞
⎟⎟⎠ λ > 0

1 −Φ
ln(t) − μ

σ

( )
λ = 0

ΓI
1

λ2
;
e
λ
ln(t) − μ

σ

λ2

⎛
⎜⎜⎝

⎞
⎟⎟⎠ λ < 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Note that the GGD can be simplified to other well-known distribu-
tions, such as the Weibull distribution (λ= 1), exponential distribu-
tion (λ = 1 & σ = 1), lognormal distribution (λ= 0), or gamma
distribution (λ= σ).

To incorporate the covariates into the model, first the indepen-
dent variable t was normalized to Z(t):

Z(t) =
ln(t) − μ

σ
=
1

σ
ln

t

μ

( )
(22)

From this normalized expression, it was found that μ is the scale
parameter and λ, σ are shape parameters. The scale parameter, μ,
could be replaced with an exponential linear combination of covar-
iates as

μ = e βx (23)

Then, the GGD became an AFT–GGD, the PDF becomes

f (t,x|σ, λ,β)= |λ|
σt

1

Γ
1

λ2

( )e

λ
ln(t)−eβx

σ
+ ln

1

λ2

( )
−e

λ
ln(t)−eβx

σ

λ2

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

λ≠0

1

tσ
���
2π

√ e
−
1

2

ln(t)−eβx

σ

( )2

λ=0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)
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