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Abstract

Traditional pavement maintenance, rehabilitation, and reconstruction (MRR) planning accounts for user cost by maximizing
drivers’ comfort, reducing users’ travel delay, and minimizing fuel consumption, while controlling the agency’s costs of under-
taking the necessary preservation activities. Safety performance is seldom considered in the MRR planning of pavements.
However, the pavement condition has a large impact on the crash frequency and needs to be addressed in the process of
pavement MRR planning. Therefore, this study first incorporates safety costs into the MRR planning process as a separate
objective. To do so, the MRR planning process seeks to find an optimal maintenance strategy with the lowest agency cost
while minimizing crash frequency and user cost based on the resulting pavement condition. A multi-objective optimization
approach is proposed to identify the optimal MRR plans that utilize a semi-Markov international roughness index deteriora-
tion model developed based on real pavement condition inspection data from Pennsylvania between 2006 and 2018. The
results suggest that the agency costs will increase by $9,716 (5.3%) per mile per lane during a 50-year analysis window for
pavement starting in good condition when the crash frequency is considered in the MRR planning. This increased agency cost
contributes to a reduction in predicted crash frequency by 0.27%. The results can be used to determine the amount agencies
need to spend on MRR activities to reduce accidents under different traffic flow and vehicle fleet combinations. The conclu-
sion of this study provided evidence that lower crash frequency can be achieved by developing better MRR planning from the
roadway operation perspective.

Keywords
infrastructure management and system preservation, pavement management systems, life cycle cost analysis (LCCA), safety,
crash frequency

Pavement maintenance, rehabilitation, and reconstruction
(MRR) planning aim to allocate a limited budget to
maintain a road network within a given service period to
achieve maximum performance. Successful MRR plan-
ning considers multiple goals. A simple method to address
multiple goals is to select a principal goal that is used as
an objective function to optimize and incorporate second-
ary goals as constraints. Examples of constraints in MRR
planning include minimum pavement condition level or
budget limitations (/). Another way to incorporate multi-
ple goals is to use a weighted sum of them in a single func-
tion; for example, converting all goals into an economic
cost using a unit cost associated with each (2). However,
the reliability of the weighted function is highly dependent

on the selection of the weight coefficients. Some objectives
are difficult to convert into specific costs, such as driver
riding comfort, driver distraction, or vehicle wear-and-
tear. Even if the weight coefficients can be determined
well, studies show that optimal solutions based on the
weighted function may be suboptimal under certain cir-
cumstances (3). Therefore, multi-objective optimization
(MOO) has become popular over the past decades. MOO
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considers multiple goals at the same time to retrieve
Pareto optimal solutions (i.e., those for which one objec-
tive cannot be improved without sacrificing another), and
its solution typically is expressed via a Pareto frontier that
provides a set of Pareto optimal solutions. Operators may
then use the Pareto frontier to quantify trade-offs between
the different objectives to select the final solution.

Two common approaches to MOO are the classic
MOO and the preference-based MOO (4). The classic
MOO procedure aims to cover the widest range of the
solution space as possible to determine multiple trade-off
optimal solutions. After retrieving the multiple trade-off
optimal solutions (Pareto optimal), the final solution can
be selected from the Pareto frontier by utilizing specific
information related to the purpose of the optimization.
A method commonly used to solve the classic MOO is to
use a genetic algorithm, for example, NSGA-II (5). On
the other hand, preference-based MOO utilizes specific
information related to the purpose of the optimization to
reduce the solution space a priori and improve the algo-
rithm efficiency. In the preference-based MOO, an esti-
mated relative importance vector, for example, that
represent weights for different objectives or the approxi-
mate monetary cost of different objectives, is first used
to reduce the MOO to a single-objective optimization.
Considering different values of the importance vector,
many of these single-objective optimizations are solved
to derive a Pareto frontier. Many methods have been
proposed to select the final solution from the Pareto
frontier, including the absolute optimal solution method,
weight method, deviation function, and knee point
method (3, 6). Because of the complexity of the MRR
planning, heuristic methods—such as genetic algorithms
and particle swarm algorithms—are usually adopted to
solve the MOO model (3, 7).

Objectives commonly included in MOO MRR plan-
ning consist of agency cost, user cost, performance level,
and environmental impact. Agency cost is typically con-
strained by budget limitations and often needs to be
minimized (8). This cost is determined by the number of
activities required in the analysis window and the
expected unit cost of each activity. Studies show that
user cost is the dominant factor in MRR planning (9).
One way to measure user cost is to measure the addi-
tional fuel consumption resulting from the deterioration
of the pavement condition (/0). Researchers have also
considered the environmental impacts of the MRR plan-
ning process to achieve sustainable development, since
road construction and maintenance lead to high carbon
dioxide emissions. Environmental impacts are mainly
addressed in the construction and usage phase of a seg-
ment (/7). Other objectives that have been considered in
the literature include social equity, maintenance mileage,
and work production (12, 13).

The objectives are integrated into the MRR planning
using a pavement deterioration model, where the costs
of each objective are estimated based on a predicted
condition. Transportation asset deterioration modeling
can be categorized into four types: (i) deterministic
models such as linear regression (/4) or polynomial
regression (/5), (ii) state-based stochastic models such
as Markov models or semi-Markov models (/6), (iii)
time-based stochastic models such as the Cox model or
the accelerated failure time (AFT)-Weibull model (17),
and (iv) machine learning based survival models (/8).
Of the different models, the AFT-Weibull model has a
flexible form that can take any bathtub shape distribu-
tion to fit the deterioration process with a simple for-
mulation, and has been shown in the literature to
achieve high accuracy (16, 19).

Studies have also shown that the pavement condition
can significantly influence the frequency of traffic crashes
in a two-lane, two-way rural roadway (20). Chan et al.
concluded that the international roughness index (IRI)
or present serviceability index are significant predictor
variables in various crash predictions models; for exam-
ple, if IRI increases from 0-100in./mile to 101-2001in./
mile, the crash frequency would increase by 1.64 times
(21). Elghriany et al. (22) suggested that pavements with
IRI around 95in./mile seem to suggest safer roadway
conditions but pavements with IRI higher than 143in./
mile are susceptible to high crash frequencies. Chen and
Zheng suggested that not including safety performance
measures in pavement MRR planning activities will
result in underestimating costs and incorrect decisions
(3). Only one study considered the safety cost in the life
cycle assessment of MRR planning; however, that work
assumed pre-determined criteria for triggering MRR
activities and did not consider the optimization of the
MRR activities (23).

In light of the above, the goal of this paper is to evalu-
ate the impact of safety costs on traditional MRR plan-
ning at the project level on a two-lane two-way rural
roadway. Three main objectives will be fulfilled in this
study to achieve this goal. First, a deterioration model
and safety performance function are estimated based on
the historical inspection data and traffic crash records.
Then, the agency cost, user cost, and safety costs of the
MRR plan are modeled. Finally, a MOO framework is
proposed to identify the optimal MRR strategies consid-
ering these different costs and the various trade-offs
between them.

The remainder of the paper is organized as follows.
The methodology is presented in the next section, fol-
lowed by the calculation of the model inputs. Next, the
model results are presented, and sensitivity analyses are
conducted. Finally, some concluding remarks are
made.
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Figure 1. Flow chart of multi-objective optimization (MOO) framework.

Methodology

In this section, the basic framework of MOO is first
described. The two critical inputs to the MOO
framework—the deterioration model and the calculation
of individual costs—are then presented in the following
subsections.

MOO Framework

The goal of this study is to include the impacts of safety
under different pavement conditions in MRR planning,
while simultaneously considering agency and user costs.
IRI is the default pavement condition indicator in
Pennsylvania Department of Transportation
(PennDOT)’s Roadway Management System database.
It is used in this paper to assess pavement condition to
develop the crash prediction model and pavement dete-
rioration model and estimate the energy consumption
under different pavement conditions. IRI is an index
measured from the longitudinal profile of the roadway
and often is thought to have less stochasticity and subjec-
tivity compared with other indicators (24). Here, it is
assumed that routine maintenance is performed at regu-
lar intervals; these activities are included in the “do-noth-
ing” option in the MRR planning. The MRR plan also
includes decisions on when to perform minor rehabilita-
tion, major rehabilitation, or reconstruction. Agency
costs are measured as a function of the required pave-
ment maintenance activities and salvage value in the end

of life cycle. User costs are calculated considering the
fuel consumption in different pavement conditions. The
safety performance is considered as a function of the
pavement condition. The overall framework of the meth-
odology is provided in Figure 1.

Calculation of Objective Function. The goal of MOO is to
determine the series of actions and their timing that can
minimize the sub-costs. The objective functions are
defined as:

fi=min > Cu(IRE) (1)
fo=min>"" Cy(IRE) 2)
f=min"" cf (IRI,) (3)

Where f;, f>, and f; are the subobjective functions, N is
the length of the planning horizon, IRI; is the pavement
condition in year i, C4(IRI;) is the agency cost as a func-
tion of pavement condition IRI;, Cy/(IRI;) is the user cost
of IRI;, and ¢f (IRI;) is the predicted crash frequency of
IRI;.

In this study, the sub-objectives of the problem, for
example, agency cost, user cost, and safety cost, are not
directly comparable with each other. The agency cost is
assumed to be the expected costs of the necessary MRR
activities, and the user cost is assumed to be the expected
cost of fuel consumption. Both of those sub-costs are
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Figure 2. lllustration of backward dynamic programming approach.

measured in monetary units. However, the safety cost is
measured in number of crashes. Here, to reduce the solu-
tion space, we apply a preference-based MOO procedure
that assigns a vector of weights to incomparable sub-
objectives—in this case agency and user cost versus
safety cost—since an approximate cost for crashes can
be found from the literature. This improves the computa-
tional efficiency of the algorithm. The monetary estima-
tion of safety cost is used as a baseline, and a wide range
of weights, w, for the safety cost is tested to obtain the
Pareto frontier. The final Pareto frontier of the MOO
problem consists of a series of optimal solutions consid-
ering all weights, w, considered. In other words, the
objective function of a single optimization instance is a
weighted sum of the agency cost, user cost, and safety
cost shown in Equation 4.

7= cutrny+ S Cotirn) +we SV ef(RE)
(4)

where w is a weight assigned to crash frequency from the
MOO framework.

To calculate the objective function value from
Equation 4, a backward dynamic programming
approach is adopted, as shown in Figure 2. Figure 2
shows the space of possible IRIs that a road segment
could be in each year considering a series of actions
taken over the planning horizon. Notice that in ear 0 the
road segment is assumed to start at the best IRI (for
illustrative purposes), however, in subsequent years when
activities happen the possible IRI conditions are varied
because of stochastic deterioration. For a given series of
actions over the planning horizon, the probabilities of
deteriorating from /RI n to IRl m in k, years, pu,(k,), are
calculated based on a deterioration model (discussed in
detail in the next subsection). These probabilities deter-
mine the potential future IRI states.

To determine the expected cost, a backward recursion
is used. A salvage value for a given IRI value at the end
of the asset’s lifetime is assumed, and using the probabil-
ities of deterioration the expected value of each state is
determined in a backward fashion. This expected value is
calculated as the summation of all the possible conse-
quences weighted by the transition probability. The cal-
culation of the expected cost after preservation activity n
when the pavement condition is in IRI category i, V,;, is
shown in Equation 5.

Vni = Z?n _ ipnm(kn> * (V(n + 1)m + kn * (CA(n’ Wl)
+ Cy(n,m) + wxcf(n,m))) (5)

where k, is the number of years between preservation
activity n and activity n + 1, Cy(n,m), Cy(n,m), and
¢f (n,m) are the average agency cost, average user cost,
and average crash frequency when a pavement deterio-
rates from IRI n to IRI m over k, years. For simplicity,
they are calculated assuming the deterioration happens
halfway through, for example, at &, /2 years. The calcula-
tion of V,,; follows a backward manner starting from the
salvage values, Si;.

Genetic Algorithm for the MOO Solution. The decision vari-
able in the optimization is the MRR activity to be con-
ducted (including do-nothing) every year over a planning
horizon (i.e., 1 X N vector where each element represents
the MRR action for that year). For long-term planning,
the solution space becomes too large to enumerate all
possible combinations to obtain the global optimum
solution. Instead, a heuristic genetic algorithm is adopted
in this study. This approach is chosen over a traditional
Markov decision process to incorporate dynamic transi-
tion probabilities of the pavement condition that are his-
tory-dependent. Each potential solution in the genetic
algorithm is coded into a chromosome.
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To improve the computational efficiency of the algo-
rithm, it is assumed that at most 10 maintenance actions
can be taken (excluding routine maintenance activities)
over the lifetime of an infrastructure (assumed to be
50 years). A series of testing experiments suggest that the
optimum solution never requires more than 10 actions in
the 50-year planning horizon. Once this constraint is
added, the structure of the chromosome is designed to
have two layers: the first layer consists of 10 numbers
denoting the year each of the 10 actions is taken while
the second layer consists of another 10 numbers repre-
senting the specific action type in the corresponding year
(0 for do-nothing, 1 for minor rehabilitation, 2 for major
rehabilitation, and 3 for complete reconstruction). Note
that, since one or more of the 10 actions that are assumed
to be conducted within the 50-year analysis window can
be “do-nothing,” the actual number of maintenance
activities, for example, minor and major rehabilitation or
reconstruction, can be 10 or less than 10. For example, in
Figure 1, the first genes in Layer 1 and Layer 2 in this
chromosome are 2 and 3, respectively, which represent
reconstruction (action 3) in the second year. However,
the second to last gene in Layers 1 and 2 are 23 and 0,
respectively. This implies that in year 23 do-nothing will
be applied. Therefore, the total number of actual mainte-
nance activities represented by this gene is less than 10.
By doing so, the length of the chromosomes is reduced to
20 from 50. While large, this is still a much smaller solu-
tion space and thus improves the computational effi-
ciency significantly when searching for the optimum
solution.

A genetic algorithm is run for each weight, w, consid-
ered for the safety cost. The best MRR plan for each
value placed on the safety impact is thus determined and
the minimum value of each objective is calculated based
on this MRR plan. A Pareto frontier is thereby created,
which represents the best solutions for which none of the
objectives can be improved and represents the trade-off
among the different objectives.

Deterioration Model

The pavement deterioration is modeled using an AFT-
Weibull model. The AFT-Weibull model assumes that
the deterioration time follows a Weibull distribution and
incorporates covariates into the model through the AFT
approach. This AFT-Weibull model has been proven to
provide a better model fit for pavement deterioration
data than other statistical models (/8). Therefore, a semi-
Markov chain process with the transition matrix calcu-
lated based on the AFT-Weibull model is developed,
which helps overcome the memoryless property of the
exponential distribution-based Markov chain process.

Since the semi-Markov chain process considers the
duration that a given discrete IRI category will last as
the dependent variable, the original continuous IRI in
the unit of inches per mile first needs to be discretized.
The detailed categorization of original continuous IRI
to discrete IRI categories is described in the “Model
Inputs” section. The output of the AFT-Weibull model
is the probability that a pavement section deteriorates
from one IRI category to the next category (e.g., from
IRI i to IRI i + 1) within a fixed time increment , At
Using the AFT-Weibull model, a semi-Markov chain
model is then used to determine the probability of a
pavement segment deteriorating to any lower IRI cate-
gory in any given year. The semi-Markov chain model
first calculates the probability of a pavement remaining
in its original IRI category i at time ¢, as Pj(¢):

t
Palt) = Si(1) = 1 — Fy() = 1 - J Ay dl ()
0
where S;(¢) is the survival function of IRI #, which repre-
sents the probability of pavement not failing by time ¢;
Fi(t) is the cumulative density function of the AFT-
Weibull model of IRI ; and, £;(#) is the probability distri-
bution function (PDF) of the AFT-Weibull model of
IRI i. Next, the PDF of a pavement segment deteriorat-
ing from IRI i to j, f;(¢), is calculated as in Equation 7.
Note that it is assumed that a pavement segment deterio-
rates from a small  to a large j incrementally, that is, all
intermediate IRI levels are visited.

_ fi() fj=i+l
Jii(t) = {féﬁun(t’)ﬁ_](t— rydd if j>i+ 1 (

Calculating the value of f;(¢) requires considering all
possible transition combinations, which results in a com-
plicated multi-layer integral. A numerical approximation
is therefore recommended to obtain those values. Finally,
the probability of a pavement segment deteriorating from
IRI i to j or higher, P; (), is calculated as in Equation
8. This is used to determine the probability of a pavement
deteriorating from IRI i to j, P;(t) as in Equation 9.

7)

Pot) = | v OF -t )

Py(t) = Py () = Py +1)..(1) )

Sub-Cost Determination

Three costs are considered to design an MRR schedule
that improves the general performance of a pavement: (i)
agency cost, (ii) user cost, and (iii) safety cost. The esti-
mations of those sub-costs are described below.
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Agency Cost. Typically, three categories of pavement
improvement activities are used: routine maintenance,
rehabilitation, and reconstruction. Routine maintenance
is a reactive, timed activity employed to ensure the basic
function of pavement, such as cleaning roadside ditches
and structures, or maintenance of pavement markings
and crack filling. These activities usually do not disturb
traffic and their costs are negligible compared with reha-
bilitation and reconstruction. Therefore, routine mainte-
nance is treated as “do-nothing” in this study, and the
associated agency cost is assumed to be zero.
Rehabilitation is a series of activities that need to be
employed when the pavement condition deteriorates to
an unacceptable level. Based on the severity, it includes
minor rehabilitation and major rehabilitation. The minor
rehabilitation activity considered in this study is a 2 in.
mill-and-fill for the asphalt top layer, and the major
rehabilitation activity considered is a 4 in. asphalt over-
lay. Reconstruction is needed when the pavement
becomes functionally useless. A typical reconstruction
activity would be an 8 or 12 in. new asphalt pavement.
Reconstruction is usually significantly more expensive
than rehabilitation and is typically performed after two
or three rehabilitation cycles. The expected costs of dif-
ferent activities are referred from the literature that esti-
mated these based on publicly available bid data for
highway projects (2).

At the end of its lifetime, an asset is assumed to still
hold value, that is, salvage value. The salvage value of
the top layers and base layers can be determined indepen-
dently. For the top layers, the remaining lifetime is esti-
mated using the deterioration models and the salvage
value is assigned proportionally to the remaining lifespan
since the last reconstruction. The salvage value of the
base layers is assumed to be a constant value and is deter-
mined as the difference between major rehabilitation cost
and reconstruction cost. These are included in the agency
cost as negative numbers since they represent a benefit to
the agency.

User Cost. The fuel consumption per unit distance is
assumed to be the main component of user cost. An
energy consumption regression model from the literature
is adopted and formulated as Equation 10 (/0):

EW,IRI) =2 + (kg + IRI + d) + b+ v + (ko  IRI + d,) 1
v

(10)

where E(v,IRI) is the expected energy consumption in
units of kilojoules per mile when driving at average speed
of v mph on a pavement condition of IRI in./mile. Since
this mode was estimated based on experiments with rela-
tively low average speed, for example, 6 mph to 70 mph,

and the dataset used to develop the crash frequency pre-
diction model and pavement condition deterioration
model is collected from a two-lane, two-way rural road-
way, the average speed is assumed to be 40mph.
Further, the impacts of IRI on travel speed are assumed
to be negligible (25). The other variables are the model
coefficients, which are provided in the literature (10).
For a passenger car, k, =0.67, d, =2175.7, k.=
0.000281, d. = 0.2186, p =33753, and b= —16.931;
for a medium truck, k,=0.918, d, =9299.3, k. =
0.000133, d. = 0.9742, p = 109380, and b = — 264.32.

The expected energy consumption at year i is calcu-
lated by multiplying the expected energy consumption
per vehicle with the average annual daily traffic (AADT)
in a year. The calculated total energy consumption is
then converted to an economic cost, Cy;, by converting
kilojoules to gallons, and using the national average gas-
oline price, pgqs, as Equation 11.

E(v,IRI) * AADT % 365

CU,(IR[) = *pgas (11)

Coj
where AADT is the average AADT of all pavements in
the dataset, which is 3,196 vehicles/day; c,; = 121.300 kJ/
gallon, according to the U.S. Environmental Protection
Agency (26); and p,,, = 3.853 %/gallon as of March
2022 (27).

Safety Performance. The safety cost of a segment can be
represented by the expected fatal and injury crash fre-
quency. A negative binormal (NB) model developed
from a previous study is used here to estimate fatal and
injury crash frequency as a function of IRI for a given
segment over a year. The NB model is selected here for
its ability to estimate positive counting data with overdis-
persion. Other than IRI, attributes including the pres-
ence of passing zone, shoulder rumble strips, AADT,
roadside hazard rating, horizontal curve density, degree
of curvature per mile, access density, and district indica-
tors are also considered in the model as covariates (20).
The NB model specification used in this study is shown
as Equation 12 (20).

In\; = By + ByInL; + B,AADT; + Bs(IRI; x AADT;)
+ B4X4,,- + ... t+¢g,

(12)

where \; is the expected crash number of segment i over
a year; L; is the length of segment i; A4DT; is the AADT
of segment i; Xy, Xs5... are the covariates listed above
such as the presence of passing zone, shoulder rumble
strips, district, and so forth; B, B, ... are the coefficients
of corresponding variables and B, is the constant term
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Table I. Correspondence Between Actual International Roughness Index (IRI) and Categorized IRl in this Study

Actual IRI (in./mile) Categorized IRI Sojourn count

Average sojourn (years) Sojourn standard deviation (years)

25-75 IRI 2 2,819
75-100 IRI'3 5,204
100-125 IRI 4 5,126
125-150 IRI'5 3,831
150-175 IRI 6 2,376
175-200 IRI'7 1,448
200-225 IRI' 8 807
225-300 IRI'9 694

3.82 2.25
3.70 2.14
3.29 1.89
2.85 1.65
2.47 1.38
227 1.27
2.25 1.26
3.14 1.96

or intercept; €; is a random error term assumed to follow
a gamma distribution.

The NB model is estimated with a maximum likeli-
hood method based on datasets collected on two-lane
two-way rural roadways across Pennsylvania (28, 29).
Most of the coefficients are estimated with a p-value less
than 0.001, and the model achieved an acceptable accu-
racy measured by Root Mean Square Error (RMSE) and
mean absolute error (MAE). The complete model estima-
tions can be found in the literature (20). The result of this
model provides an estimated number fatal and injury
crashes on different road segments.

Model Inputs

The inputs to the model consist of the deterioration
model and the calculated agency and user costs along
with the safety performance, which is introduced in the
next two subsections.

Estimated Deterioration Model

Pavement condition inspection data were obtained from
PennDOT’s Roadway Management System (RMS) data-
base. The RMS database includes information for every
roadway segment within Pennsylvania and records the
annual traffic volume (i.e., AADT) and composition (i.e.,
truck percentage), cross-sectional information, number
of access points, presence of a horizontal curve, and IRI
value. Each segment has up to four IRI values recorded
per year, and 99.5% of the IRI records are within the
range of 25 to 300in./mile. Therefore, IRI values within
the range of 25 to 300 in./mile from the period 2006-2018
are used in this study and are cleaned and processed
according to the literature (20).

A state-based deterioration model, such as the semi-
Markov process, requires a discrete categorization of the
IRI. To do so, the IRI is divided into eight categories, as
shown in Table 1. This categorization is chosen to aid in
the development of the semi-Markov chain process
model to provide enough differentiation between each
category while not leading to computational inefficiency.

The National Performance Management Measure divides
IRI into three categories: 1. good condition = IRI less
than 95.04 in./mile, 2. fair condition = IRI between 95.04
and 169.80in./mile, and 3. bad condition = IRI greater
than 169.801in./mile (30). First, a discretization at every
25in./mile is adopted to remain relatively consistent with
these criteria while obtaining categories with a relatively
equal number of observations. To achieve enough data in
each group, IRIs from 25 to 75 and from 225 to 300 are
then combined as one group, respectively. Finally, the
time each pavement spends in these IRI categories is
extracted as the sojourn time. If the beginning or end time
of a pavement being in a certain category is unknown,
this is marked as censored data. A brief statistical sum-
mary of the extracted sojourn times is shown in Table 1.
An AFT-Weibull deterioration model is estimated for
each category of IRI, considering the dependent variable
as the time spent in each IRI category. The covariates
considered in this model include PennDOT engineering
district, average annual daily truck traffic, access point
density, and degree of curvature per mile. These dete-
rioration models are estimated using a maximum likeli-
hood approach. The accuracy of the models is measured
using the concordance index (C-index), which reflects the
ability of the model to predict the ranking of which infra-
structure elements will survive the longest. The models
for IRI 3 and IRI 4 had the highest accuracy measured
by the C-index, at 0.74 and 0.64, respectively since these
two categories had the most available data. The results
suggest that the district plays an important role in the
deterioration model because of differences in the natural
and human environment, as well as the available budget.
The average daily truck traffic is negatively correlated to
most of the IRI groups, which indicates that higher truck
traffic leads to lower expected lifespan, which is consis-
tent with expectation. Based on the deterioration models
for each IRI category which provide the probabilities of
each IRI category to deteriorate to a lower condition in
the future, the one-year transition matrix to different
conditions is calculated assuming a semi-Markov chain
model, see Equations 6 through 9. Using these equations
for all combinations of starting and ending IRI values,
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Table 2. Transition Matrix from AFT-Weibull of Do-Nothing in One Year

IRI 2 IRI'3 IRI 4 IRI'5 IRI 6 IRI'7 IRI 8 IRI'9
IRI 2 0.9104 0.0895 0.0001 0 0 0 0 0
IRI'3 0 0.9955 0.0045 0 0 0 0 0
IRI 4 0 0 0.9854 0.0146 0.0001 0 0 0
IRI'5 0 0 0 0.975 0.0249 0.0001 0 0
IRI 6 0 0 0 0 0.9655 0.0343 0.0002 0
IRI'7 0 0 0 0 0 0.9577 0.042 0.0003
IRI 8 0 0 0 0 0 0 0.9487 0.0513
IRI'9 0 0 0 0 0 0 0 |

the one-year transition probability matrix is as shown in
Table 2. From Table 2, it can be seen that more than
90% of pavement will stay in the same condition level in
the next year and have a very small chance of deteriorat-
ing by one or two IRI categories.

Further, one-year transition matrices for the three
maintenance activities considered—minor rehabilitation,
major rehabilitation, and reconstruction—are also devel-
oped based on the one-year do-nothing transition matrix.
It is assumed that minor rehabilitation will improve the
condition by one IRI category based on a study which
found that minor rehabilitation such as crack mainte-
nance, sealing, patching, or spalling is likely to improve
the condition rating by 0.48, 0.41, and 0.79, respectively
(31). It is also assumed that major rehabilitation will
improve the condition by three IRI categories based on a
study which found that IRI could be improved by 80.47
to 88.801in./mile after maintenance (32). The transition
matrix after applying preservation action is thus deter-
mined by “shifting” the probabilities shown in Table 2
by one or three IRI levels to the left for the minor and
major rehabilitations. Reconstruction will reset the pave-
ment to the best condition, for example, IRI 2, no matter
what the current condition is.

Cost Calculations

To demonstrate the methodology at the project level, a
specific two-way two-lane pavement segment within the
PennDOT RMS database is chosen. This segment is one
mile long with an AADT of 3,196.11 vehicles/day of
which 8.96% is truck traffic. There are no passing zones
or shoulder rumble strips within this segment, and the
access point density is 16.33 points/mile. This segment is
located in district 2 with a roadside hazard rating of 4 or
5, the horizontal curve density is 2.24 degrees/mile, and
the degree of curvature per mile is 17.25degrees/mile.
Note that the methods presented here are generalizable
to any segment.

For this case study, the sub-cost in different pave-
ment conditions is estimated based on the methodology
presented in the “Methodology” section. A 50-year

planning horizon is considered, and the agency cost,
user cost, and crash frequency are estimated per mile
per lane over the 50 years. The results are presented in
Table 3. In this table, all costs are calculated per lane
per mile, and an average gas price of $3.853 per gallon
in 2022 is used.

MOO Model Results and Discussion

The MOO takes as inputs the deterioration model and
costs calculated above. The geneticalgorithm library in
Python (33) is used here to implement the genetic algo-
rithm to find the optimal solution. The population size is
set at 50, the iteration is set at 500, the crossover type
among different chromosomes is set as one point muta-
tion, and the mutation probability is set as 0.2, the other
hyperparameter settings follow the default values in the
geneticalgorithm library.

Experiments are performed to explore the impact of
safety costs on MRR planning. Safety cost is incorpo-
rated into the model in units of the number of fatal or
injury crashes. To analyze the impact of safety costs on
MRR planning, different weights of crash frequency are
considered and the optimal solutions for different
weights are obtained. A basic reference of the economic
cost associated with a fatal or injury crash is adopted
according to Pennsylvania Crash Facts & Statistics,
which states that the average economic losses of fatal
and injury crashes are about $13,383,153 and $759,652,
respectively (34). Those numbers are weighted by the
number of actual fatal and injury crashes that occurred
on Pennsylvania roads during 2020, which was 1,129 and
61,248, respectively, to derive the average economic cost
of a fatal and injury crash as $988,133. However, this
single cost associated with a traffic crash is somewhat
subjective. Therefore, denoting this value as Eg, a range
of weights, w, from 0 to 10 X Eg to the predicted crash
frequency are considered in this study.

The results are presented to examine the sensitivities
to three variables: (i) starting conditions, (ii) the transi-
tion probability, and (iii) traffic volume level.
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Table 3. Cost Calculations for Different Pavement Conditions
Costs calculation IRI'2 IRI' 3 IRI 4 IRI'5 IRI 6 IRI'7 IRI 8 IRI'9
Agency cost
Do-nothing ($) 0 0 0 0 0 0 0 0
Minor rehabilitation ($) 48,365 48,365 48,365 48,365 48,365 48,365 48,365 48,365
Major rehabilitation ($) 87,014 87,014 87,014 87,014 87,014 87,014 87,014 87,014
Reconstruction ($) 261,501 261,501 261,501 261,501 261,501 261,501 261,501 261,501
Salvage value
Remaining lifespan (year) 44.1 39.1 247 16.5 10.3 5.6 0 0
Remaining lifespan value ($) 261,501 231,852 146,464 97,840 61,076 33,206 0 0
Base value ($) 174,486 174,486 174,486 174,486 174,486 174,486 174,486 174,486
Total salvage value ($) 435,987 406,339 320,951 272,327 235,563 207,693 174,486 174,486
User cost
Car energy consumption (M)) 7,996 8,118 8,199 8,281 8,362 8,444 8,525 8,688
Truck energy consumption (M]) 2,311 2,323 2,331 2,339 2,347 2,355 2,363 2,379
Total energy consumption (M)) 10,306 10,441 10,530 10,620 10,709 10,799 10,888 11,067
Gas consumption (gallon) 85 86 87 88 88 89 90 91
User cost ($) 119,490 121,048 122,086 123,124 124,162 125,200 126,238 128,314
Safety cost
Number of predicted crashes 0.0626 0.0637 0.0645 0.0653 0.0661 0.0669 0.0677 0.0694
(a) (b)
é E 3205
? 300000 S
2 g 3200

2 3 4 5
Safety Cost Weight (Es)

2 3 4 5
Safety Cost Weight (Es)

Figure 3. Impact of safety cost weight on agency cost as safety cost: (a) agency cost and (b) predicted crash frequency.

Sensitivity to the Starting Condition

When the pavement starts from different conditions, the
optimal MRR plan varies as different weights of the
safety cost are considered. Here, three possible initial
IRI conditions are assumed: IRI 2, 3, and 4. Figure 3
provides the change in agency cost and predicted crash
frequency for different weights of the safety costs. As
shown, the necessary agency cost increases as the safety
cost weight increases to maintain the pavement in a
higher condition and reduce the predicted crash fre-
quency. A pavement that starts from a worse condition
requires not only higher agency costs but also a larger
crash frequency, as expected. Note that crash frequency
cannot be reduced much after a safety cost weight of
2Es, even with more MRR activities.

Pareto frontiers to show the trade-off between agency
cost and safety cost are shown in Figure 4 as dashed
lines. The corresponding safety weights for points on the
Pareto frontier are also marked for a pavement starting
from IRI 2 as an example. As the predicted crash fre-
quencies reduce, the agency costs increase as expected.
Further, if safety is not considered in the MRR planning
( w=0), the predicted crash frequency is the highest, as
expected. As the weight of safety cost increases, the bene-
fits of a pavement in good condition become more signif-
icant. Therefore, the optimal MRR plan chooses to
adopt more maintenance activities to keep the pavement
in a higher condition. In this scenario, the increased
agency cost is offset by a lower safety cost. As the safety
cost is valued more, initially crash frequency can be
decreased without much increase in agency cost.
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Figure 4. Pareto frontiers for pavements starting from different
conditions (Pareto optimal solutions of pavement starting from IRI
2 are marked in this plot).

However, as the safety cost is weighed more, the agency
cost needs to increase significantly more to reduce the
crash frequency further. Note that after a weight of 3.6 it
appears that the agency cost needs to increase signifi-
cantly to reduce the predicted crash frequency, that is,
there are diminishing returns on safety.

The change in the agency, user, and safety costs as a
function of the weight of safety cost is shown in Table 4
for pavement starting from IRI 2. Notice that agency
cost is the smallest component, always accounting for less
than 3% of the total cost. When only the agency cost is
considered in the objective function, the resulting user
cost and expected crash frequency are the highest since
the optimal MRR plan only adopts MRR activities at
the end of the lifespan to achieve a higher salvage value.
When user cost and agency cost are considered without
safety cost, the user cost and expected crash frequency
decrease considerably, leading to a significant decrease in

Table 4. Subobjective Costs of Pavement Start from IRI 2

total cost. When the safety cost is also included in the
objective function with a weight of Eg, the predicted
crash frequency decreases by 0.27%, which leads to the
agency cost increasing by 5.3%. Further, this leads to a
slight decrease in user costs since the overall pavement
condition improves. As the safety cost is weighted more,
the trade-off between agency cost and crash frequency
becomes more obvious. When the safety cost weight
increases to 10Eg, the reduction of predicted crash fre-
quency is minor but leads to a significant increase in
agency cost. Further, when the safety weights increase
from Eg to 4Es or from 5Eg to 8Eg, the agency costs do
not change, which indicates that the same number of
activities are being performed, however, the user cost and
crash frequency are different, indicating that the activities
are scheduled at different times, likely as a result of the
algorithm terminating in a suboptimal solution.

To further explore the change in MRR plans as the
safety cost and starting condition vary, Figure 5 visua-
lizes the best MRR plans with different safety cost
weights for pavements starting from IRI 2 and IRI 4.
For comparison, the case where user cost is excluded is
also shown. To achieve the minimum cost in this sce-
nario, the agency will leave the pavement to deteriorate
to the lowest condition in the analysis window but only
adopt two consecutive major rehabilitation actions at the
end of the life cycle to achieve a higher salvage value.
Two consecutive major rehabilitations is the most cost-
efficient way to restore the pavement to high condition
for higher salvage value at the end of the analysis win-
dow. Compared with the other scenarios in Figure 5, it
can be seen that the user cost and safety cost shift the
MRR plan from only pursuing the salvage value at the
end to achieving an overall good pavement condition
during the whole life cycle. Further, as the safety weight
increases, the maintenance schedule becomes more

Objective function

Agency cost ($) (% change*)

User cost ($) (% change) Safety cost ($) (% change) Total cost (% change)

6,138,800 (2.1%)

6,000,411 (—0.19%)
5,998,737 (—0.22%)
5,998,090 (—0.23%)
5,997,591 (—0.24%)
5,990,776 (—0.35%)
5,990,191 (—0.36%)
5,990,841 (—0.35%)
5,989,226 (—0.38%)
5,988,469 (—0.39%)

Only A 174,028 (—5.3%)
A+ U 183,744 (0) 6,011,814 (0)
A+ U+ Sw=1E) 193460 (53%)
A+ U+ Sw=2E) 193,460 (5.3%)
A+ U+ Sw=3E) 193,460 (5.3%)
A+ U+ Sw=4E) 193,460 (5.3%)
A+ U+ Sw=5E) 241,825 (31.6%)
A+ U+ Sw=6E) 241,825 (31.6%)
A+ U+ Sw=7E) 241,825 (31.6%)
A+ U+ Sw=8E) 241,825 (31.6%)
A+ U+ Sw=9E) 280,474 (52.6%)
A+ U+ Sw=10E) 241,825 (31.6%)

5,989,247 (—0.38%)

3,265,876 (2.9%)
3,173,585 (0)
3,164,974 (—0.27%)
3,163,771 (—0.31%)
3,163,302 (—0.32%)
3,162,952 (—0.34%)
3,158,082 (—0.49%)
3,157,665 (—0.50%)
3,158,136 (—0.49%)
3,156,980 (—0.52%)
3,156,442 (—0.54%)
3,156,994 (—0.52%)

9,578,704 (2.24%)
9,369,143 (0%)
9,358,845 (—0.11%)
9,355,968 (—0.14%)
9,354,852 (—0.15%)
9,354,003 (0.16%)
9,390,683 (0.23%)
9,389,681 (0.22%)
9,390,802 (0.23%)
9,388,031 (0.20%)
9,425,385 (0.60%)
9,388,066 (0.20%)

Note: A = agency cost; U = user cost; S = safety cost; w = weight; E; = average economic cost of a fatal and injury crash
*Changes are calculated compared with the case when only agency cost and user cost are in the objective function.
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Figure 5. Maintenance, rehabilitation, and reconstruction (MRR) plans for different safety weights when starting at IRl 2 and IRI 4.

Note:

*For visualization, minor rehabilitation, major rehabilitation, and reconstruction are counted as |, 2, and 3 of unit actions, respectively.
**“A only” denotes the best MRR plan when only considering the agency cost and salvage value; “A&U” denotes considering the agency cost, user cost;
“A&U&S” denotes considering the agency cost, user cost, and safety cost in the objective function but safety costs are considered in the weight of wEs.

frequent, and tends to use a series of minor rehabilita-
tions regularly to maintain the pavement in a better con-
dition. For a pavement starting from a worse condition
(i.e., IRI 4), a major rehabilitation is employed in the
beginning to reset the condition to the best level. The
number of actions for each scenario is also domesticated
on the right side of Figure 5. This is only used for visuali-
zation to estimate the required MRR workload for differ-
ent scenarios. To compute this value, each minor
rehabilitation is treated as one-unit action, each major
rehabilitation is treated as two-unit action, and each
reconstruction is treated as three-unit action. From the
results, as the weight of safety costs increase in the objec-
tive function, about one and three extra unit actions are
required to achieve the lowest total cost for pavement
starting from IRI 2 and IRI 4, respectively.

Sensitivity to the Transition Probability Matrix

To explore the transition probability’s impact on MRR
planning, the transition probability matrix is altered to
an assumed matrix. The goal is to understand how incor-
rect estimations of the transition matrix would affect the

resulting MRR planning. The average deterioration rates
are kept the same as the AFT-Weibull model-based transi-
tion matrix, but the variation is eliminated by setting con-
stant probabilities of remaining at the same IRI level,
deteriorating to one lower level, and deteriorating to two
lower levels as 0.9, 0.07, and 0.03, respectively. For example,
assuming the current condition as IRI i, the probability of
remaining in IRI 7 in one year is 0.9, the probability of dete-
riorating to IRI i + 1 is 0.07, and the probability of dete-
riorating to IRI i + 2 is 0.03 for all i = 2...7. For IRI 8§,
the probability of remaining in IRI 8 is 0.9 and the prob-
ability of deteriorating to IRI 9 is 0.1. The corresponding
transition matrix for minor, major rehabilitation, and recon-
struction is derived in the same way as previously. The best
MRR plan for pavement starting from IRI 2 for this new
set of transition matrices is shown in Figure 6.

From Figure 6, it can be observed that with the new
transition matrix the most frequent activity becomes
major rehabilitation instead of minor rehabilitation. The
main reason for this is that the new transition matrix
lowered the probability that a minor rehabilitation can
improve the IRI category, and so the major rehabilita-
tion is chosen more often.
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Figure 6. Best maintenance, rehabilitation, and reconstruction (MRR) plans using assumed transition probability matrix.

*For visualization, minor rehabilitation, major rehabilitation, and reconstruction are counted as |, 2, and 3 of unit actions, respectively.
**“A only” denotes the best MRR plan when only considering the agency cost and salvage value; “A&U” denotes considering the agency
cost, user cost; “A&U&S” denotes considering the agency cost, user cost, and safety cost in the objective function but safety costs are

considered in the weight of wE,."

The slight variation of the transition matrix leads to
completely different MRR planning, and the safety impact
on the best MRR plan changes as well. These results there-
fore highlight the importance of using an accurate dete-
rioration matrix when optimizing MRR plans.

Sensitivity to AADT

Crash frequency is closely correlated to traffic volume.
Therefore, the impact of safety cost on MRR planning
varies under different traffic loads. The AADT used for
the experiment in the “Estimated Deterioration Model”
section was the average AADT of all pavements in the
dataset, which is 3,196 vehicles/day. In this section, two
comparative case studies with low AADT levels (set at
1,100 vehicles/day) and high AADT levels (set at
11,000 vehicles/day) are analyzed to explore the impact
of traffic load.

For different AADT levels, the associated user cost
(fuel consumption in this study) and safety cost (pre-
dicted crash frequency for each unit length of a segment),
are different. Further, since the AADT is an input to the
deterioration model, the transition matrix also varies.
The calculation of user cost and predicted crash fre-
quency under different AADT levels suggests that the
user costs and predicted crash frequencies increase as
AADT increases. A pavement starting from IRI 2 is
selected to test the influence of traffic load. The two
comparison cases have the same parameters except for
the AADT Ilevel. Figure 7 shows the change in agency
cost as the safety cost weight increases.

From Figure 7, it can be found that the safety cost has
a greater impact on MRR planning when the AADT is
high. The agency cost increases more in the high AADT
situation when considering safety costs. When the safety

— Low AADT

280000 High AADT

260000 11

240000

220000 f

Agency Cost ($)

200000

180000

4 6
Safety Cost Weight (Es)

Figure 7. Agency costs change as safety cost weight varies for
different average annual daily traffic (AADT) levels.

cost weight increased to 10 Eg, the necessary number of
actions increased from four to nine in the high AADT sit-
uation, but only increased to six in the low AADT condi-
tion. This is expected since, as the traffic load increases,
the predicted crash frequency increases as well. This will
lead the agency to conduct more maintenance activities
to improve the pavement condition, thereby reducing the
safety cost.

Conclusion

This study is the first to consider the cost of safety in the
pavement management process and provide evidence
that lower crash frequency can be achieved by develop-
ing better MRR plans. This was achieved through a
MOO approach that considered the user cost, agency
cost, and safety cost. The MOO approach utilizes a
genetic algorithm, and also utilizes a deterioration model
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to understand the impact of different MRR plans on the
objective function. By conducting a series of experi-
ments, this study first examined the impact of safety
costs on MRR plans for pavements starting from differ-
ent conditions. The results show that as a larger weight
is put on the safety cost, the required maintenance activi-
ties increase so that the pavement can be kept in good
condition. Specifically, when adding the safety cost into
the objective function with a weight of Eg, the predicted
crash frequency decreased by 0.0087 fatal or injury
crashes, which led to the agency cost increasing from
$183,744 to $193,460 for pavement deteriorated from IRI
2. In other words, when the safety cost is considered in the
MRR planning with an economic cost suggested by
Pennsylvania Crash Facts & Statistics, the agency cost
increased by 5.29% for good pavement condition. The
optimal MRR plans suggested that one extra maintenance
activity is needed in 50 years of MRR planning when con-
sidering the cost of crashes economically with a weight of
10E for pavements starting from IRI 2. Compared with
this, a pavement starting from a worse condition, that is,
IRI 4, three more activities are needed for the same safety
weight. This indicates that traffic safety has a greater
impact on pavements in worse condition in the MRR
planning process compared with that of pavements in bet-
ter condition. Finally, this study examined the impact of
safety costs on MRR planning for segments with different
traffic loads. Additional maintenance activities are needed
for segments with higher traffic loads compared with seg-
ments with low AADT.

This study used simplified user cost calculations and
assumptions about the deterioration of the pavement to
demonstrate the methodology of how to incorporate safety
on MRR planning and its impacts. When available, agen-
cies should utilize location-specific data to transfer the
models to the specific location of interest. In this study,
IRI is adopted as the pavement condition indicator, but
different indicators that are more relevant to the crash fre-
quency, such as pavement frictional characteristics, could
be explored based on the proposed methodology frame-
work for other case studies given available datasets.
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