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Abstract
Bridge deck deterioration modeling is critical to infrastructure management. Deterioration modeling is traditionally done
using deterministic models, stochastic models, and recently basic machine learning methods. The advanced machine learning-
based survival models, such as random survival forest, have not been adapted for use in infrastructure management. This
paper introduces random survival forest models for bridge deck deterioration modeling and compare their performance with
a commonly used traditional stochastic model, that is, the Weibull distribution-based accelerated failure time (AFT-Weibull)
model. To better adapt the random survival model for bridge deck deterioration modeling, the selection of the dependent
variables is discussed between two variables: time-in-rating, and cumulative truck traffic. Inspection data from about 22,000
state-owned bridge decks in Pennsylvania are used to validate and test the performance of the models. The results suggest
that cumulative truck traffic is more suitable to be selected as the dependent variable when analyzing the reliability of the
bridge deck. Further, the random survival forest model outperformed the AFT-Weibull model in predictive accuracy.
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The analysis of bridge deck deterioration is critical to
infrastructure system management. Bridge deck dete-
rioration models can predict the future conditions of
assets and in turn guide rehabilitation programs and
budget allocation to maximize the life span of bridges.
Deterioration modeling can be done to model the life-
cycle deterioration process or to model the deterioration
probabilities from a specific condition rating (CR) to a
lower CR for individual time steps. The present study
focuses on the latter approach.

Classic models used for survival analysis, which focus
on the deterioration probability of an asset, include sim-
ple linear models, Kaplan-Meier estimator, Cox propor-
tional regression, distribution-based stochastic models,
among others (1, 2). With the improvement in computa-
tional power, machine learning methods have started to
demonstrate superiority over traditional models both in
model accuracy and capability (3–5). However, some
advanced machine learning-based survival models, such
as random survival forest (RSF), are only used in the
medical field and their suitability in the infrastructure

management area has not been examined. Thus, the aim
of this paper is to study the suitability of RSF for bridge
deck deterioration analysis and testing its performance
compared with a traditional statistical method, that is,
Weibull distribution-based accelerated failure time model
(AFT-Weibull model).

Literature Review

Survival models are different from most typical models
since the dependent variable has two dimensions: (i) the
duration that the object has been in a specific condition,
known as the sojourn time or time-in-rating (TIR), and
(ii) whether the entire duration of this TIR is observed or
not, that is, censoring. Censoring occurs when the start
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or endpoint of being in a condition is not observed, how-
ever, the knowledge of the minimum duration that an
object was in a specific condition still provides valuable
input into the model. Various models have been devel-
oped in the literature to model the deterioration process
of infrastructure systems. Based on the model forms and
implementation scenario, they have different purposes
and corresponding advantages and limitations. The com-
monly used models are summarized in Table 1.

Deterministic models, such as linear regression, poly-
nomial, and logistic regression, are among the more tra-
ditional models which are simple to implement and easy
to interpret (14). However, these models do not account
for the distribution of the data; they can perform well for
the range of the data used but can have significant errors
for data outside of the range of data used, for example,
predicting negative sojourn times. They also perform well
for continuous variables, however, these are rare in the
asset management (15), and they cannot incorporate cen-
sored data. On the other hand, stochastic models are

more realistic since these models capture the uncertainty
of the deterioration process. Based on the model’s pur-
pose, it can be classified as a state-based model or a time-
based model. State-based models, such as the Markov
chain model (8) and semi-Markov model (3), predict the
whole deterioration process from the highest condition
to the lowest condition and the uncertainty is addressed
by a transition probability matrix. However, their perfor-
mance is limited by the memoryless assumption and
homogeneous transition probability (16). Time-based
models focus on predicting the deterioration probability
for a given time point, which can be non-parametric and
parametric. Generally, non-parametric and semi-
parametric models, such as Kaplan-Meier model (2) and
Cox proportional model (9), can capture the deteriora-
tion process more realistically since they are not required
to follow a mathematical distribution. However, these
models are limited to the range of the available data or
may suffer from the proportional hazard assumption. On
the other hand, parametric models are simple, efficient,

Table 1. Summary of Commonly Used Deterioration Models

Model type Model examples Model purpose Advantages Limitations

Deterministic models Linear regression (6);
polynomial
regression (7)

Condition rating
prediction

1. Simple implementation;
2. Easy interpretation;
3. Easy to integrate into
bridge management
system.

1. Unable to incorporate
censored data;

2. Problematic to
extrapolate results;
3. Accuracy relies on data
quality.

State-based stochastic models Markov model (8);
semi-Markov model
(3)

Deterioration
process modeling

1. Capture the
uncertainty;

2. Easy to implement on
complex network.

1. Memoryless
assumption;

2. Homogeneous
transition probability.

Time-based stochastic models Cox Proportional
model (9); AFT-
Weibull model (3)

Deterioration
probability
prediction

1. Interpretable;
2. Flexible distribution
forms;
3. Can incorporate
censored data;
4. Capture the
uncertainty of real
deterioration process.

1. Proportional hazard
assumption:

2. A specific distribution
of the data is assumed.

Traditional machine
learning models

K-nearest neighbors
(5); artificial neural
networks (4, 5);
random forest (10)

Condition rating
prediction

1. High accuracy;
2. Non-linear relationship
between response
variable and explanatory
variables.

1. Unable to incorporate
censored data;

2. Uninterpretable.

Advanced machine
learning survival models

Random survival
forest (11, 12);
survival support
vector machine (13)

Deterioration
probability
prediction

1. Can incorporate
censored data;

2. Predict the whole
deterioration probability
curve;
3. High accuracy;
4. Non-linear relationship
between response
variable and explanatory
variables.

1. Only used in medical
area;

2. Incompatible with
bridge management
system platforms.

Note: AFT-Weibull = Weibull distribution-based accelerated failure time.
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and interpretive. Commonly used distributions for para-
metric survival models include exponential, Weibull, log-
normal, gamma, and generalized gamma distributions
(17, 18). Censored and uncensored data are jointly con-
sidered in stochastic models by jointly using the hazard
function (instantaneous probability of failure) for uncen-
sored data and the reliability function (the cumulative
probability of failure) for censored data in the estimation
of the models (2, 17). However, the randomness in the
deterioration process can lead to these models having
low accuracy. Manafpour et al. (3) developed an AFT-
Weibull model to analyze the deterioration process based
on the Pennsylvania bridge inspection data, but it takes
the traditional sojourn time as the dependent variable,
which might underestimate the impact of traffic load on
the selection of attributes. Also, the novel machine
learning-based approaches might improve the accuracy
compared with the AFT-Weibull model used in previous
studies.

Machine learning methods have been studied recently
for modeling deterioration of the transportation infra-
structure (19). These methods are essentially more intelli-
gent non-parametric models since they rely solely on the
data; however, they can learn the trends of the data intel-
ligently to improve the usability of the predictions. One
study compared five data mining techniques: logistic
regression, decision trees, neural network, gradient
boosting, and support vector machine for modeling
deterioration of steel bridge superstructure, and found
that logistic regression achieved the highest prediction
accuracy (19). Another study showed that the back-
propagation neural network can predict bridge deteriora-
tion with 75.4% accuracy (10, 20). Assaad and El-Adaway
even observed a 91.44% testing accuracy for predicting
the condition of a bridge deck using a well-tuned artificial
neural network model (5). Other commonly used machine
learning approaches in infrastructure deterioration model-
ing include k-nearest neighbors, recurrent neural net-
works, and random forest, in which the ensemble learning
algorithms (i.e., random forest) are believed to have super-
ior performance (21). Even though these machine learning
methods have been shown to achieve good prediction
accuracy, they only take traditional datasets as input.
Therefore, they cannot incorporate censored data nor pro-
vide a complete deterioration probability curve for the
entire analysis window.

Currently, two advanced machine learning methods
that can model survival exist, namely RSF and survival
support vector machine (Survival-SVM). RSF is differ-
ent from the traditional random forest in which the split-
ting rule for partitioning the dataset and the predicted
approach for the terminal leaves are adjusted to incorpo-
rate censored data and provide a complete deterioration
probability curve. Survival-SVM is an extension of Rank

SVM and only treats a pair of ranks as valid when the
lower observed time is uncensored since the exact dura-
tion of censored data is unknown (13). Estimating a
Survival-SVM can be very complex and time-consuming,
especially when the kernel function is complex and the
dataset size is large. Thus, RSF is more popular for sur-
vival analysis. However, to the authors’ knowledge, these
advanced machine learning-based survival models are
only used in the medical area. Examples of applications
include clinical risk prediction (11), survival prediction
of breast cancer patients (12), and comparison of sur-
vival from different illnesses (22). Different applica-
tions have focused on tailoring the methods to the
specific problem considered, such as determining how
best to implement the splitting of the tree (11, 12).
Further, one study compared the RSF with a Cox
regression and demonstrated that the two methods
achieved compatible results in modeling breast cancer
survival, while RSF showed a slightly better perfor-
mance than other approaches (23).

The use of survival machine learning methods in the
area of infrastructure deterioration is unknown. Since
the infrastructure deterioration and medical survival pro-
cesses are significantly different in many aspects and pos-
sess different deterioration patterns, the appropriate
implementation of survival machine learning methods
for infrastructure deterioration needs to be studied.

Research Objectives

Based on the literature review, the present study intro-
duces the RSF model into the infrastructure management
literature and adapts it for bridge deck deterioration
analysis. The performance of RSF is compared with a
commonly used traditional stochastic model, that is, the
AFT-Weibull model, to analyze the advantages of
the different types of modeling approaches. Note that
the AFT-Weibull model is chosen as the state-of-the-art
model since it has been shown to outperform determinis-
tic models (15, 24, 25) and the Markov model (16).
Weibull distribution is also proved to be the most suit-
able distribution for infrastructure management com-
pared with exponential, log-normal distribution (15, 26).
The purpose of both AFT and RSF models is to predict
the deterioration probability for a given time, therefore,
they are more comparable than the other models. Based
on these advantages, the AFT-Weibull model is selected
as a benchmark in this study to shed light on the perfor-
mance of the RSF model. Further, the RSF method’s
independent variable selection process is tailored to the
bridge deck deterioration analysis.

The remainder of the paper is organized as follows.
The basic theory of RSF and dependent variable selec-
tion is introduced in the enxt section, followed by a
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description of experiments and results. Next, the associ-
ated discussions are presented. Finally, key results, lim-
itations, and future research are presented in the
concluding section.

Methodology

The major model used in the present study is RSF. In
this section, the basic theory of RSF and the major dif-
ference from a traditional random forest methodology is
outlined.

RSF

RSF is a type of ensemble learning approach that com-
bines a series of basic learners, such as survival trees.
The ensemble RSF takes the average of the basic lear-
ners’ predictions as the final output, and therefore has
higher predictive accuracy and robustness. The basic the-
ory is similar to a traditional random forest. The general
construction of a decision tree and a random forest is
illustrated in Figure 1. A typical random forest can be
described with the following hyperparameters: (a) num-
ber of estimators, (b) maximum depth, (c) the minimum
number of samples in a leaf, and (d) the maximum num-
ber of features considered for splitting. The number of
estimators determines the number of trees estimated to
be combined for the random forest. As this number
increases, the random forest model becomes more
robust, but also more complex and difficult to interpret.
The maximum depth of the tree determines the number
of layers considered. As the tree depth increases, each
terminal leaf will be representative of a smaller subset of
the data. The minimum number of samples in a leaf is
also related to the tree depth, that is, the tree will not be
split further once the minimum number of samples in a

leaf is met even if the tree depth allows for further split-
ting. Finally, the maximum number of features consid-
ered for splitting represents the number of variables
considered in each tree. While all variables are consid-
ered for a decision tree, in a random forest method each
tree only considers a subset of variables, which improves
the robustness of the model and avoids overfitting.
Detailed mathematical expressions can be found in the
literature (27).

A traditional random forest is a powerful tool, but
censored data cannot be incorporated into this model.
RSF modifies the traditional random forest to improve
the splitting rule, prediction method, and evaluation
metric, to be able to account for censored deterioration
data. The other approaches used to improve an RSF,
like bagging, boosting, and pruning, are similar to the
traditional random forest, and thus the details are not
repeated here (28).

Splitting Rule

The splitting rule is used to partition the dataset into sub-
sets that maximize the difference between and minimize
the difference within each subset. As a result, observa-
tions that share similar characteristics are grouped into
the same terminal node, thus a prediction based on the
observations within a terminal node can closely represent
the data pattern of its members.

In the traditional random forest, the common splitting
rules, such as Gini index and entropy, aim to maximize
the similarity of the output within each subset. Normally,
the output is a one-dimension variable and has clear
equations to measure its similarity. However, for the sur-
vival data, the output is two-dimensional, and the final
prediction is a complete deterioration probability curve.
Thus, the splitting rule in RSF should aim at generating

Figure 1. Architecture of a decision tree (left) and a forest (right).
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subsets that have the most different deterioration pat-
terns. The log-rank test is commonly used to quantify the
difference in the deterioration patterns predicted from
each subset (29). In the log-rank test, the null and alter-
native hypotheses are:

H0: The deterioration pattern in the two datasets is
identical.
H1: The deterioration pattern in the two datasets is
significantly different.

The test statistic function for the Z-value to accept the
null hypothesis is shown in Equation 1:

Z =

Pk
i= 1 O1, i � E1, ið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

i= 1 V i

q ;N (0, 1) ð1Þ

where O1, i is the observed number of deaths at the time,
ti, in subset 1; E1, i is the expected number of deaths at
the time, ti, in subset 1, which can be calculated as

E1, i =
diY 1, i

Y i
. Y 1, i is the number of individuals at risk (nei-

ther dead nor censored) at the time ti in subset 1; di is
the number of individuals dead at the time ti.

V i is the variance of the observed number of deaths,
which can be calculated as:

V i =
Y 2, iY 1, idi Y i � dið Þ

Y 2
i Y i � 1ð Þ

ð2Þ

Prediction Method

The prediction method for the RSF relies on the use of a
cumulative hazard function (CHF) measured using the
Nelson-Aalen estimator. The cumulative hazard repre-
sents the aggregated hazard, or instantaneous risk of fail-
ure, over time. It can be interpreted as the number of
times a failure (i.e., the CR lowering) would be expected
over the analysis window. The Nelson-Aalen estimator is
much focused on the hazard of the asset during the life
cycle. The CHF of the Nelson-Aalen estimator is:

Ĥ tð Þ=
X

ti\t

di

Y i

ð3Þ

where ti are the elements of all distinct event times; di is
the number of deaths at the time ti; and Y i is the total
number of individuals at risk (neither dead nor censored)
at the time ti.

To predict the Nelson-Aalen estimator for a given ter-
minal leaf, the hazards of all data that fall in that leaf are
combined. This can be used to determine the risk of fail-
ure at a given time for a new bridge deck.

Evaluation Metric

To understand how well a given RSF performs, the pre-
diction accuracy of that RSF needs to be determined.
However, the prediction of the deterioration pattern for
a single observation is not necessarily meaningful since
the results are probabilistic. Therefore, the performance
of the RSF method is evaluated by comparing the rank-
ing of the predicted risk score with the actual survival
data in the whole testing dataset. The risk score, r, is the
total number of failures expected over the lifetime of the
study for a given bridge deck with a set of attributes, x,
within the analysis window (30). This risk score can be
estimated as the sum of the estimated CHF, Ĥh, for a
terminal node h as shown in Equation 4.

r =
Xnh

j= 1
Ĥh(Thjjx) ð4Þ

where nh is the number of distinct uncensored times of
samples in terminal node h; Thj is the j th item of these
distinct uncensored times in terminal node h.

The model evaluation first predicts the risk scores for a
set of bridges in the testing dataset. Next, these bridges are
ranked by risk score from lowest to highest. Finally, the
ranking of the real (observed) survival times is determined.
The ranking from the model prediction is compared
with the ranking from the real data. The accuracy of the
ranking prediction is measured by the concordance index
(C-index), which reflects the ability of a survival model to
predict the survival time rank based on the predicted risk
scores. The C-index can be computed as Equation 5.

C =

P
i, j IT j\Ti

� I rj\ri

� djP
i, j IT j\Ti

� dj

ð5Þ

where ri is the predicted risk score of a unit i; ITj\Ti
= 1

if Tj\Ti else 0; I rj\ri
= 1 if rj\ri else 0; and dj denotes

the censorship of the data. dj = 0 means uncensored
data, dj = 1 means censored data. The range of the
C-index is from 0.5 to 1, where C = 1 corresponds to the
best model prediction, and C = 0:5 represents a random
prediction.

Finally, the C-index can also be used to measure the
importance of different input variables in determining
the survival curve. To do so, permutation-based feature
importance is calculated by measuring the C-index of the
original model and comparing it with the C-index of a
shadow model, which is created by randomly shuffling
the values of a given attribute in the training data. The
difference in the C-index of the original model and
shadow model is assumed to be indicative of the impor-
tance of that variable in determining the final survival
curve. Therefore, the rank of features is determined as
the ordered gains in C-index.
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Experiments and Results

To demonstrate the performance of RSF in bridge deck
deterioration modeling, the dataset of inspection records
of 22,000 bridge decks from Pennsylvania is adopted,
and a summary of the dataset is described in this section.
First, the choice of the dependent variable is explored.
Two candidate variables, namely time-in-rating (TIR)
and cumulative truck traffic (CTT), are tested. Next, the
hyperparameters of the RSF are calibrated, the best
structure is demonstrated, and the model is compared
with the AFT-Weibull model.

Data Description

The Pennsylvania Department of Transportation con-
ducts regular inspections of approximately 22,000 state-
owned bridges at most every two years. In the inspection
report, a general condition rating (CR) is assigned to a
bridge deck to reflect the general condition of the bridge
deck between 1 and 9, where CR 9 represents the best
condition. In the present study, the dataset was separated
into nine subsets based on the CR. Before developing the
model, the dataset is cleaned and processed based on sev-
eral rules: (a) rows with important data missing are dis-
carded; (b) abnormal data, such as a single outlier CR,
are corrected; (c) if the CR changed more than two levels
(higher or lower) in between inspections, this change was
marked as ‘‘sharply increased’’ or ‘‘sharply decreased,’’
respectively, and recorded in the EVENT variable. These
‘‘events’’ could be reconstruction or incidents that hap-
pened to the bridge. After cleaning the raw data, valid
information for 18,354 bridges was obtained. The TIR
for each CR was extracted, including whether the TIR
was censored or not. A TIR with an unobserved start-
point or endpoint, or suffering from an incident or reha-
bilitation that significantly changed the CR, was treated
as a censored data point. A total of 44,086 TIRs were

extracted and classified by CR. Summary statistics for
the distribution of the TIRs were determined as shown in
Table 2.

It can be seen that only a few bridge decks have uncen-
sored data points with condition ratings lower than CR
4, since typically CR 1 through 3 are considered poor
conditions. Thus models of CR 4 and higher are more
reliable. In this study, the RSF was illustrated with the
sub-dataset of CR 6 and in the following, deterioration
probability refers to the probability of a bridge deck dete-
riorating from CR 6 to CR 5. However, note that similar
results were obtained for other CR values.

The attributes of each bridge are the static configura-
tion of the deck structural components, which may accel-
erate or decelerate the deterioration process. These
attributes are incorporated into the model as explanatory
variables to analyze their impact on TIR or CTT. The
major attributes used in this study are summarized in
Table 3.

EVENT is a variable generated during data processing
which is used to denote whether rehabilitation or an inci-
dent happened to a bridge that sharply increased or
decreased the CR of the bridge, respectively. It was deter-
mined by checking if the CR changed more than two rat-
ings in a pair of two adjacent inspection points (about
3 years).

Dependent Variable Selection

An appropriate choice of the dependent variable can sig-
nificantly improve the performance of the model. TIR is
a commonly used dependent variable for infrastructure
management, which represents the duration for which a
bridge has been in a specific condition rating (26).
However, time-based deterioration models may not be
able to capture fully the deterioration rate difference of
bridge decks since the amount of truck traffic can

Table 2. Statistic of Time-in-Rating Values of Bridge Decks

Condition Censored Uncensored

Rating Count Mean (days) Std (days) Count Mean (days) Std (days)

CR 1 19 2,809 2,509 2 1,040 348
CR 2 104 1,690 1,263 13 1,818 1,124
CR 3 1,007 2,022 1,709 170 2,034 1,421
CR 4 3,132 3,197 2,410 783 2,581 1,717
CR 5 6,016 4,010 2,759 2,317 2,935 1,794
CR 6 7,264 4,024 2,622 3,865 2,977 1,719
CR 7 8,636 3,957 2,603 3,817 3,054 1,760
CR 8 3,234 2,610 1,927 2,612 2,501 1,443
CR 9 654 1,420 1,106 381 1,747 1,049
Total 30,066 13,960

Note: CR = condition rating; Std = Standard Deviation.
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significantly affect bridge deck deterioration. The annual
average daily truck traffic (ADTT) varies across different
bridges and influences the design of a bridge deck.
ADTT is also a dynamic variable that may change in dif-
ferent years. Based on the TIR and ADTT, the CTT,
which reflects the total traffic load that a bridge was
exposed to before deteriorating, can be calculated and is
monitorable in practice. Therefore, in addition to the
TIR, the CTT, calculated as the product of TIR and
ADTT in each year, is proposed as an alternative depen-
dent variable. Note that these two variables are indepen-
dent (e.g., the correlation coefficient is 0.25).

The reliability of a bridge deck denotes the probability
of a bridge deck remaining in the same CR for a given
time, which equals 1 minus deterioration probability.
The reliability analysis for bridge decks using both
dependent variables, TIR and CTT, is demonstrated
with respect to three typical attributes, that is, rebar
type, span number, and surface type, to compare the per-
formance of the two dependent variables.

Rebar Type. Three different types of rebar used for bridge
decks were compared: bare, epoxy-coated, and galva-
nized. Figure 2a shows the TIR of bridge decks with dif-
ferent CRs and rebar types and suggests that the average
TIR (;7 years) is mostly independent of rebar type.
However, the number of the bridges (Figure 2b) and the
ADTT that a bridge experienced (Figure 2c) with differ-
ent rebar types are significantly different. There are more
bridges in higher CRs with galvanized or epoxy rebar,
and these bridges often experience a higher ADTT. Thus,
even though the bridge decks have similar TIRs, the
advantage of the galvanized or epoxy rebar might be
compromised by the heavier traffic load. Thus, the TIR
alone is not enough to reflect the reliability difference of
different rebar types. However, the difference in reliabil-
ity based on rebar type can be seen when considering
CTT (Figure 2d). The results suggest that bridge decks
with epoxy or galvanized rebar have higher reliability
than bare rebar bridges when considering CTT, which
aligns with the engineering judgment (31).

Table 3. Description and Values of Attributes, Including the Count of Each Value in the Dataset

Attribute (National Bridge
Inventory item number) Description Values (counts)

DISTRICT (2) District number District 1 (2,707); District 2 (2,102); District 3 (3,171); District 4
(2,200); District 5 (2,215); District 6 (2,912); District 8 (5,369);
District 9 (3,497); District 10 (2,443); District 11 (2,672);
District 12 (2,817).

BUILT_YEAR (27) Year of construction Before 1942 (6,359); 1942–1980 (13,468); after 1980 (5,665)
STRUC_TYP (107) Deck structure type Concrete—reinforced (26,324).
MAIN_MATERIAL_TYPE (43A) Main material types Steel (8,531); Concrete (cast in place) (6,205); Concrete

(precast) (537); Prestressed precast concrete (P/S) (15,774);
Concrete encased steel (982).

MAIN_PHYSICAL_TYPE Physical make-up of the main
span of the structure

Reinforced (6,744); Pretensioned (15,600); Rolled sections
(4,787); Rolled sections with cover plates (1,174); Combination,
rolled sections/cover plates (334); Other (3,313).

MAIN_SPANS (45) Main bridge spans (number of
spans in the main unit.)

Single span (20,209); Multi-span (11,122).

MAIN_STRUC_CONFIG (43) Structural configuration for the
main span of the structure.

Slab (solid) (2,378); T-beams (3,985); I-beams (11,653); Box
beam—single (5,681); Box beam—adj (6,614); I-Welded beams
(410); Girder weld/deck (722).

DECK_REBAR_TYPE Deck rebar type. Bare (12,960); Galvanized (561); Epoxy (11,738); Unknown
(6,794).

MEMBTYPE (108B) Waterproofing membrane on
the bridge main span.

None (26,722); Preformed fabric (3,816); Other (368).

SURF_TYPE (108A) Wearing surface types on the
bridge main span.

Concrete overlay (17,543); Epoxy overlay (974); Bituminous
(13,340).

LENGTH (112) Bridge length. The total overall length of the bridge.
DECK_WIDTH (52) Bridge deck width. Bridge deck width.
ADT_Total (29) Average daily traffic in total Average daily traffic in total, including all types of vehicles.
ADTT (109) Average daily truck traffic. Average daily truck traffic.
SPECIAL EVENT If a special event happened. Sharply decrease (3,497); Normal (22,332); Sharply increase

(6,212)

Note: Values (counts) only show the values whose count is larger than 1% of the whole dataset.
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Span Number. Single-span bridges were compared with
multi-span bridges to see trends in deterioration. The
average deck length of a single-span bridge is 42 ft, com-
pared with 278 ft for a multi-span bridge. From the TIR
distribution, single-span and multi-span bridges perform
similarly. However, this does not necessarily indicate that
a single-span bridge is as reliable as a multi-span bridge
from an engineering perspective. Considering the number
of bridges (see Figure 3b) and the ADTT (see Figure 3c),
while there are more single-span bridges, the multi-span
bridges carry more trucks. This implies that the multi-
span bridges are mostly constructed in areas with heavy
truck traffic but can still achieve similar TIRs as single-
span bridges. This indicates that the multi-span bridges
have higher reliability than single-span bridges, which is
confirmed by the CTT-based analysis (see Figure 3d).

Surface Type. Overlays are used to remedy spalling and
cracking for deteriorated bridge surfaces. Comparing the
TIRs for the three different overlay materials used (con-
crete, asphalt, and epoxy) it can be seen that bridge decks
that have an asphalt overlay have on average an 8.8%
greater TIR, see Figure 4a. However, only a few bridges

have an epoxy overlay (see Figure 4b) and these bridges
have larger daily truck traffic than bridges with concrete
or asphalt overlay (see Figure 4c). Therefore, when con-
sidering the CTT, bridges with epoxy overlay have the
highest reliability, while bridges with asphalt overlay
have the lowest reliability (see Figure 4d). The reliability
of the different overlay material considering the CTT is
more aligned with field experiments (32).

Overall, comparing the reliability of bridge decks with
different rebar types, span numbers, and surface types
reveals that CTT can better reflect the reliability of a
bridge as compared with TIR and better match engineer-
ing judgment. Generally, it might be difficult to capture
the reliability difference of the attributes considering
only TIR since the design choice is often influenced by
expected traffic load.

RSF

In this section, the RSF model is implemented consider-
ing TIR and CTT as the dependent variables to further
compare their performance. When TIR is the dependent
variable, the ADTT is incorporated as one of the

Figure 2. Distribution for rebar type by condition rating of: (a) time-in-rating, (b) number of bridges, (c) average daily truck traffic, and
(d) cumulative truck traffic.
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covariates, while when CTT is selected as the dependent
variable, ADTT is excluded from the model. First, 20%
of the data is randomly selected and set aside for testing
the trained model performance. The remaining 80% of
the data is used to train the model parameters. The
model parameters are trained by performing a fourfold
cross-validiation, so the remaining training data is
divided into four groups. Each group is selected to vali-
date the dataset once, while the remaining groups are
used as a training dataset, that is, this process is repeated
four times. Therefore, four sets of training-validating
datasets are obtained and the average accuracy of these
four training and validating datasets is used to select the
optimal model specification.

To achieve the best performance of the RSF, the
hyperparameters need to be well tuned. The main hyper-
parameters that need to be tuned include: (a) the number
of estimators, (b) maximum depth, (c) minimum samples
in a leaf, and (d) the maximum features for splitting. A
commonly used approach for tuning the hyperpara-
meters of machine learning methods is grid search, which

is also used in the present study (5). The RSF model is
implemented with the Python package scikit-survival
(30). The grid search space for these hyperparameters is
shown in Table 4.

The hyperparameters of RSF that achieved the top
five performances for the TIR-based model and CTT-
based model are shown in Table 5.

The results suggest that the CTT-based models out-
performed the TIR-based model in predictive score in
both validation and testing datasets. The CTT model was
able to obtain 83.62% accuracy on the testing dataset
compared with the TIR model at 59.13% when measured
by C-index. This further confirms that the dependent
variable of CTT can provide better differentiation for the
impacts of the attributes on deterioration.

The best CTT-based model consisted of 270 estima-
tors. As the number of estimators increase, the advantage
of the ensemble approach becomes apparent and the
accuracy of the model increases. However, increasing
the number of estimators beyond 270 no longer improves
the accuracy, but increases the complexity of the model.

Figure 3. Distribution for span type by condition rating of: (a) time-in-rating, (b) number of bridges, (c) average daily truck traffic, and
(d) cumulative truck traffic.
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The optimal maximum depth is found to be 18, and the
minimum number of samples in a leaf is found to be 200.
These two hyperparameters together determine the size
of each tree. When the tree is deep, the number of sam-
ples in a leaf became small, and the deterioration curve
based on these samples becomes too specific and not rep-
resentative of general categories. When the tree is too
small, the dataset is not partitioned enough, and the
information available from the covariates is not fully
explored. The maximum number of features for splitting
can help control the amount of randomness of the RSF.

The optimal value of this is eight, which denotes that in
each splitting node, the model randomly selects eight out
of the total of 12 features used in this study (as shown in
Table 3) to search for the best splitting point. This helps
build a diverse set of decision trees for the random forest
and helps avoid overfitting.

With the well-tuned RSF model, the deterioration
curve for a new observation can be predicted. The impor-
tance rank of each feature in the RSF determined as a
result of the permutation-based feature importance is
shown in Figure 5.

From the feature importance results, it can be found
that the traffic load and the size of a bridge, including the
width, length, and the number of spans in the main units,
are the factors most influential to the deterioration pro-
cess. This is consistent with the conclusions of research
for Indiana’s bridge deterioration analysis from Moomen
et al. (14). Other than this, Moomen also concluded that
the environmental (climate) variables, such as freeze
index in 1,000s of degree-days, or the average annual
number of freeze-thaw cycles, are also critical to the dete-
rioration rate, which are unfortunately not available for

Figure 4. Distribution for surface type by condition rating of: (a) time-in-rating, (b) number of bridges, (c) average daily truck traffic, and
(d) cumulative truck traffic.

Table 4. Grid Search Space for the Hyperparameters of Random
Survival Forest

Hyperparameters Search space

Number of estimators 110, 120, 130, ., 300
Maximum depth 2, 3, 4, 5, ., 30
Minimum samples in a leaf 20, 40, 60, 80, ., 300
Maximum features for splitting 2, 3, 4, 5, ., 12
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the present study. However, the district variable not only
represents the maintenance policies that are very different
among different locations but also processes geographi-
cal diversity (both terrain and weather). It can be seen as
a surrogate to the climate variables, and is ranked high
from the RSF model. Another deterioration model for
Indiana bridges (24) found that REGION is not statisti-
cally significant when predicting TIR, since the climate
variables are included as independent variables. The sur-
face type and membrane type were ranked lower by the
model. This could be the result of the correlation between
the wearing surface system and the other attributes, such
as traffic load, district, and bridge size.

To further illustrate the deterioration curve of
individual bridges with different attribute values, the
DISTRICT attribute is selected for illustration. The sur-
vival function for five new bridges, all assumed to be in
different districts but with the same attributes, is con-
structed and are shown in Figure 6. This figure illustrates
the survival probabilities at CR 6 obtained by averaging
the survival curves from all the trees in the terminal
nodes of the RSF. As can be seen, the RSF model can
differentiate the survival probabilities of bridges with dif-
ferent attributes. The bridges from districts 2 and 4,
which are near Philadelphia, have higher survival prob-
abilities than bridges from other districts when all the
other attributes remain the same. This is consistent with
the expectation that the districts near big cities have
larger budgets, therefore, the bridge decks in those areas
are stronger than other places. On the other hand, this
curve also provides a life expectation in respect of CTT
rather than time, such as done by Srikanth and
Arockiasamy (15). For example, the curves shown in
Figure 6 represent the probability of deterioration from

Table 5. Best Model Configuration from Grid Search

Dependent variable Rank
Number of
estimators

Max.
depth

Min. samples
in a leaf

Max. no. of
features for

splitting

Average
C-index

on training
datasets

Average
C-index

on validating
datasets

C-index on
testing dataset

Time-in-rating 1 200 12 20 5 0.7382 0.6088 0.5913
2 200 12 40 5 0.6874 0.6060 0.5937
3 200 12 60 5 0.6619 0.5973 0.5901
4 200 12 80 5 0.6464 0.5929 0.5876
5 220 12 200 10 0.6115 0.5869 0.5891

Cumulative truck traffic 1 270 18 200 8 0.8562 0.8476 0.8362
2 100 18 200 8 0.8553 0.8476 0.8360
3 200 18 200 8 0.8550 0.8475 0.8352
4 200 16 200 8 0.8550 0.8475 0.8353
5 200 13 200 8 0.8560 0.8472 0.8356

Note: min. = minimum; max. = maximum; no. = number; bold = best performing models considering each dependent variable.

Figure 5. Permutation-based feature importance.

Figure 6. Survival function predictions of bridge decks from
different districts while other attributes remain the same.
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CR 6 to CR 5. When the CTT is up to 2million trucks,
the survival probability decreased to around 30%. If we
assume a survival probability lower than 30% is unac-
ceptable and denotes the end of the current CR, based
on the ADTT, the expected life span in CR 6 can be cal-
culated. For example, the average ADTT in the dataset
is 955 trucks/day, then the average lifespan of the bridge
shown in Figure 6 can be calculated as 5.7 years. This is
roughly consistent with the summary in Srikanth and
Arockiasamy (15) that reinforced bridge decks survive
between 24 to 48 years if the threshold of CR 4 is applied
as the minimum acceptable CR. However, since the
ADTT varies dramatically in the dataset, the specific
expected life span of each bridge can be different as well.

Comparison with AFT-Weibull Model

To compare RSF with traditional deterioration models, a
Weibull distribution-based accelerated failure time model
is chosen as a benchmark, which is commonly used in the
infrastructure deterioration analysis (3, 33). The AFT-
Weibull model can take any bathtub shape distribution
as the basic deterioration function and, therefore, is
proved to be more appropriate than other distribution-
based models.

The probability density function (PDF) of the AFT-
Weibull distribution, f (t), is shown in Equation 6.

f t, X,b, kð Þ= k
ebX

t
ebX

� �k�1
e
� t

ebX

� �k

t ø 0

0 t\0

8<
: ð6Þ

where t is the dependent variable, in this case, CTT; b
and k are the parameters of the AFT-Weibull distribu-
tion, and X is the vector of covariates. ebX is the acceler-
ated failure term to incorporate the covariates.

The probability of a bridge deck deteriorating to a
lower CR can be modeled by the cumulative density
function (CDF). The equation for the CDF of the
Weibull distribution, F tð Þ, is shown as Equation 7.

F tð Þ= 1� e
� t

ebX

� �k

ð7Þ

The AFT-Weibull model is implemented on the same
bridge deck deterioration data with CTT as the depen-
dent variable. Here, 80% of the data is used to estimate
the model and the remaining 20% of the data is used to
test the model performance. Both censored data and
uncensored data are incorporated by the PDF and CDF,
respectively, in the likelihood function (33). The model is
estimated with a Python package lifeline (34), and the
parameters are estimated using the maximum likelihood
estimation approach. The model is well tuned to achieve
the highest accuracy, and the parameters are estimated
using the maximum likelihood estimation approach as
shown in Table 6. Table 6 shows the coefficient of each
variable, along with the corresponding p-value, which
denotes the confidence level. Note that in the AFT-
Weibull model a positive coefficient implies longer sur-
vival times. When categorical variables are considered,
the coefficients should be interpreted as compared with
the baseline, for example, reinforced concrete structure
type has a positive coefficient which leads to longer

Table 6. AFT-Weibull Model Coefficient Estimations

Attribute Value Coefficient P-value

DISTRICT 5 20.21 0.07
6 20.93 \0.005
9 20.92 \0.005
11 20.87 \0.005

STRUC_TYP Concrete reinforced 0.4 0.06
MAIN_MATERIAL_TYPE Prestressed precast concrete 20.66 0.04
MAIN_PHYSICAL_TYPE Pretensioned 0.51 0.1

Rolled sections 20.3 0.02
MAIN_SPANS 0.04 0.07
REBAR_TYPE Epoxy rebar 0.17 0.09

Galvanized rebar 0.26 0.02
SURF_TYPE Concrete 20.74 \0.005

Concrete overlay 20.58 \0.005
Asphalt 20.49 \0.005

BUILT_YEAR 1943–1980 0.4 \0.005
WIDTH 0.01 0.08
ADT_TOTAL 5.20E-05 \0.005
Intercept 4.06 \0.005
k 0.21 \0.005

Note: AFT-Weibull = Weibull distribution-based accelerated failure time.
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survival times compared with other types of structures.
The results suggest that the district, rebar type, deck
width, and total ADT are significant variables in predict-
ing bridge deck deterioration probability. The district vari-
able shows a significant influence on the reliability of
bridges since it not only represents the maintenance poli-
cies that vary among different locations but also has geo-
graphic diversity (both terrain and weather). The signs of
these coefficients are consistent with engineering judgment.
For example, the baseline of the wearing surface type is
selected as epoxy overlay and low-slump concrete, and the
sign of the coefficients of concrete, concrete overlay, and
asphalt are all negative, which implies that epoxy overlay
and low-slump concrete are the strongest surface. This is
consistent with engineering judgment and the results
shown in Figure 4. Bridges that were built between 1943
and 1980 appear to be stronger than the bridges built
before 1940 or after 1980 because of the positive coefficient
of this variable. This is expected since the data indicates
that bridges constructed between 1940 and 1980 generally
carry more load. The member type, which are less impor-
tant variables in the RSF model, were found to be insignif-
icant in the AFT-Weibull model as well. Surprisingly,
length, which was ranked third in the RSF model, was not
found to be significant in the AFT-Weibull model.

The log-likelihood, which describes the joint probabil-
ity of the observed data as a function of the parameters of
the estimated model, on the training dataset is 2343.31.
To make a uniform standard to compare the performance
of the RSF and AFT-Weibull models, the C-index is used
as an indicator of the model’s prediction accuracy, see
Equation 5. The attributes and CTT of bridge decks in
the same testing dataset are input into the RSF and AFT-
Weibull models to calculate the corresponding deteriora-
tion probabilities. The ranking of those deterioration
probabilities is compared with the real CTT and the asso-
ciated censorships, and the accuracy of deterioration
probabilities is measured by C-index. Therefore, a higher
C-index represents a better model performance. The C-
index of the AFT-Weibull model in the training dataset is
73.74%, and the C-index for the predictions of the testing
dataset is 69.31%. The accuracy of the AFT-Weibull
model on the testing dataset is much lower than the accu-
racy of the RSF model at 83.62%. Since the AFT-
Weibull model is proved to be more accurate than other
stochastic models (15, 25, 26), these results might indicate
that the RSF is more powerful than traditional stochastic
models for predicting infrastructure deterioration.

Discussion

TIR versus CTT

The present study showed that CTT is more suitable to
be the dependent variable of bridge deck deterioration

models than TIR, which is commonly used in survival
analysis. From a practical perspective, this is because the
influence of TIR on reliability is compromised by the
selection of attribute values in the bridge design process.
Engineers tend to select stronger materials or structures
for bridges that are expected to experience heavier traffic,
which leads to all bridges, regardless of the type of con-
struction or materials, having a similar lifespan. Thus, it
is difficult to distinguish reliability from a temporal per-
spective. However, the CTT reflects the actual traffic
load that a bridge experiences, which is the main contri-
butor to deterioration (along with the environment), and
thus can differentiate the reliability of a bridge more
accurately. It is also feasible to use a CTT-based model
for a real infrastructure management process, since the
traffic load of a bridge is usually closely monitored, and
the data is easily collected during regular inspection.

RSF versus AFT-Weibull

This paper indicates that RSF has higher predictive accu-
racy than the AFT-Weibull model measured by C-index.
RSF also can provide the importance of each feature,
shown in Figure 5, which is helpful to determine the com-
ponents critical to design and maintenance of a bridge
deck. The AFT-Weibull model, on the other hand, is
more suitable to analyze the impact on the reliability of
different attribute values, since the coefficient for each
attribute value is estimated. Take the coefficient estima-
tions for the rebar type variable in Table 6 as an example.
The coefficient estimation for bare rebar is 0.17, and the
coefficient for galvanized rebar is 0.26. Both coefficients
have low p-values, 0.09 and 0.02, respectively, which
denote high confidence levels. Further, variables with
larger coefficients represent a longer lifespan, so galva-
nized rebar is found to be statistically more reliable than
the bare rebar, which confirms the results found from the
analysis of the raw data. In respect of the model specifi-
cation, the interpretation of the impact of attribute values
in RSF is not intuitive, while the AFT-Weibull model is a
typical parametric method, which is simpler and can be
explicitly formulated. This can help the integration of the
deterioration model with a bridge management system
platform, such as AASHTOWare Bridge Management
System.

Overall, even though RSF outperformed the AFT-
Weibull model in prediction accuracy, the model selec-
tion should be based on the research purpose, data
quality, and application scenario.

Engineering Significance

From an engineering perspective, the RSF model intro-
duced in this study improved the prediction accuracy of
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the deterioration probability for a bridge deck and, there-
fore, can aid in the decision process of maintenance,
repair, and reconstruction to improve budget allocation.
For a newly constructed bridge, the initial deterioration
curve can be predicted by inputting the key attributes of
the bridge into the RSF model and the maximum accep-
table period for a bridge deck to remain at the same CR
can be derived based on pre-defined thresholds of relia-
bility. Further, the RSF model can be used to design
bridge decks that can survive longer when considering
different attributes.

The RSF model also can be integrated with other life-
cycle deterioration analysis models, such as providing
the transition probability matrix for the Markov chain
model. By acquiring the deterioration probability of each
CR from the RSF model, the entire deterioration process
of the bridge in its life cycle can be predicted.

Conclusion

This paper introduced the RSF (typically used in the
medical field) into infrastructure deterioration analysis,
adapted it to bridge deck deterioration modeling, and
compared its results with a state-of-the-art AFT-Weibull
model. CTT is chosen as the dependent variable, over
TIR since experiment results suggest that CTT reflects
the reliability of a bridge more accurately. The adapted
RSF achieved a much higher predictive accuracy in the
testing dataset when considering CTT as the dependent
variable, 83.62% (C-index), as compared with 59.13%
for TIR as the dependent variable. Further, the RSF
model with CTT as the dependent variable also outper-
formed a representative stochastic model, the AFT-
Weibull model that also uses the CTT as the dependent
variable (69.31%). The results suggest that RSF has
advantages in predicting the rank of risks of bridge
decks, providing a complete deterioration probability
curve, and determining the feature importance. The RSF
model’s use scenarios are different from stochastic mod-
els since the RSF is a non-parametric method with higher
predictive ability but lower interpretability of the impact
of attribute values.

Different enhancements of RSF should be considered
for future studies, such as alternative splitting rules,
boosting, bagging, and pruning techniques that are com-
monly used in the traditional random forest. Bridge
length multiplied by the ADTT reflects the exposure of a
bridge to the truck traffic, and this could be another pos-
sible dependent variable candidate for the deterioration
model. This can be further tested for future study.
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